

PRODUCT INFORMATION 2022

Preamble

The PHYTOsolution-3-Step-System:

- Leaf/ plant tissue analyses in advance
- Identification of nutrient deficiencies
- Specific fertilisation and support for the culture

PHYTOsolution with it's location in Freyburg/Unstrut - in the eastern part of Germany near Leipzig - is specialized in the development and production of biostimulants and liquid fertilisers for foliar or soil application in the areas of farming, horticulture, vegetable, fruit and wine, home and garden.

PHYTOsolution is your partner for innovative concepts in plant nutrition. Besides a wide product range we also offer individual help. Leaf analyses and advisory services help you to keep your cultures in a well balanced nutrition.

PHYTOsolution tries to use raw materials which confirm to EU regulations for organic growing whenever possible. The micronisation of natural rock flours enables us to formulate highly concentrated suspensions for various nutrients. A second speciality is the use of natural low-molecular weight Carboxylic Acids as complexing agents and physionutrient for water soluble nutrient fertilisers. **This innovative technology allows nutrient supply to all cultures even under dry and hot wheather conditions.** Our products are very easy to handle and very well tolerated by plants and the environment.

PHYTOsolution keeps the product line always up to date to the state of scientific knowledge and optimizes the recipes or expands the range with new useful products.

With our special service, a fast and meaningful "leaf analysis" we also guarantee an optimal and efficient use of our products.

LEAF ANALYSIS

PHYTOsolution closely cooperates with the "Institut für **A**grar- und **U**mweltanalytik" in Freyburg. **IAU** analyses and evaluates soil and plant tissues within a short period of time. The results dislose nutrient deficiencies of any culture. A following well-directed treatment with single nutrients helps the culture to recover immediately.

We will be happy to cooperate with you and look forward to personal contacts.

With best regards,

Werner Bannach

Product overview

Organic N-Fertiliser (Amino Acids)

NPK- and Bio-NPK-Fertiliser Liquids

Biostimulators

Multiple Nutrient Fertiliser

Single Nutrient Fertiliser

Culture Specific Fertiliser; Adjuvants

Contents

Page

Page

Organic Nitrogen Fertiliser based on Amino Acids	
Plantosol [®]	5
Bio-Plantosol [®] 8	5
PhytoGreen [®] -Booster 9)
PhytoGreen [®] -BioBooster 9)

NPK-Fertiliser Liquids

PhytoGreen®-NPK 12-4-6	. 11
PhytoGreen [®] -NPK 8-8-6	11
PhytoGreen [®] -NPK 5-20-5	11
PhytoGreen [®] -NPK 7-21-7 + Micro elements	11
PhytoGreen [®] -NPK Plus (9-6-3+ Mg+ micros)	12
PhytoGreen [®] -NP Liquid 7-18	13
PhytoGreen [®] -PK Plus (0-11-7 + Mg + Mn)	. 14
PhytoGreen [®] -HiPhos (0-30-5 + Mg)	15
PhytoGreen®-NPK Complete (solid formulation)	16

Bio-NPK-Fertiliser Liquids with sugar beet vinasse

PhytoGreen [®] -Bio-NK	17
PhytoGreen [®] -Bio-NPK 2-5-8	17
PhytoGreen [®] -Bio-NPK 3-4-3	17
PhytoGreen [®] -Bio-NPK 4-1-5	17
PhytoGreen [®] -Bio-NPK 7-2-2	17
PhytoGreen [®] -Bio-NPK 8-3-4	17
without sugar beet vinasse, purely vegetable	
without sugar beet vinasse, purely vegetable PhytoGreen [®] -Bio-NPK 8-3-2	18
PhytoGreen®-Bio-NPK 8-3-2	18
PhytoGreen [®] -Bio-NPK 8-3-2 PhytoGreen [®] -Bio-NPK 7-2-2	18 18

Biostimulators

PhytoGreen®-Algae Extract/ Algae Juice	19
PhytoGreen [®] -BetaBoost	
Black Hum	21
PhytoGreen [®] -Humus WP	
PhytoGreen [®] -Antifreeze	
PhytoGreen [®] -Bio-Silicon	

Multiple Nutrient Fertiliser

PhytoGreen [®] -CaMgB	24
PhytoGreen [®] -MagS	25
PhytoGreen®-ManganeseNitrate	
PhytoGreen [®] -Silicon	27
PhytoGreen [®] -MultimicroMix Carbo	

Single Nutrient Fertiliser

PhytoGreen [®] -Boron	
PhytoGreen [®] -Calciumborate	
CARBO-ECO Ca	
PhytoGreen®-CalciumCarboxylate	

	20
Phytosol [®]	
PhytoGreen [®] -Cu256	
CARBO-ECO Cu	
PhytoGreen [®] -CopperCarboxylate	
CARBO-ECO Fe	
PhytoGreen [®] -IronCarboxylate	
CARBO-ECO K	
PhytoGreen®-PotassiumCarboxylate	
PhytoGreen [®] -Manganese27	
CARBO-ECO Mn	
PhytoGreen [®] -ManganeseCarboxylate	
PhytoGreen [®] -Manganese150	
CARBO-ECO Mg	
PhytoGreen®-MagnesiumCarboxylate	
PhytoGreen [®] -Mg500	
PhytoGreen [®] -Molybdenum	
PhytoGreen [®] -Sulphur800	
PhytoGreen [®] -Zinc40	
CARBO-ECO Zn	
PhytoGreen [®] -ZincCarboxylate	

Culture Specific Fertiliser for seed treatment:

PhytoGreen [®] -CerealStarter	
PhytoGreen [®] -CornStarter	
PhytoGreen [®] -PotatoStarter	
PhytoGreen [®] -LegumeStarter	

for foliar treatment:

PhytoGreen [®] -CerealMix	40
PhytoGreen [®] -CerealMix Carbo	
PhytoGreen [®] -CornMix	41
PhytoGreen [®] -CornMix Carbo	41
PhytoGreen [®] -FruitColour	
PhytoGreen [®] -FruitCombi	
PhytoGreen [®] -PotatoMix	
PhytoGreen®-RapeseedMix	45
PhytoGreen [®] -RapeseedMix Carbo	45
PhytoGreen [®] -CitrusMix	

Adjuvants

PhytoGreen [®] -CropCover1000	
PhytoGreen [®] -pH Total	
CARBO-ECO pH	
Citrisol	
PhytoGreen [®] -PowerClean	

Leaf and Fruit Analysis

Analysis order form	
Example of leaf analysis result	53
Sampling	

Summary of fertilisers

Product	əɓed ən		Ĕ	acro n	macro nutrient*	*			ä	cro nu	micro nutrients*		ţ	further*		(tisnab	Recommentations	Organic growers
* amounts given in % w/w and g/l	goleteo	z	P ₂ O ₅	K₂O	Са	Mg	s	ß	Сц	Fe	u W	ω	Zn S	SiO ₂ Algen		kg/l	(leaf application)	
								Orgai	nic N	I-Fei	rtilize	sr (Ar	mino	rganic N-Fertilizer (Amino acids)				
Plantosol®	8	9,0% 108 g/l													5,5	1,2	to reduce stress, to repel of ground game, to improve plant protection: all 07;Xgen cuttures 2-7,5 l/ha	L
Bio-Plantosol	8	3,5% 39 g/l													4	1,1	to reduce stress, to repel of ground game, to improve plant protection: all 07;FiBL;Xgen cultures 2-7,5 l/ha	-;Xgen
PhytoGreen®-Booster	6	8,0 % 96 g/l												×	5	1,2	Vegetables/Fruits/Grapes 0,3-1 I/ha	
PhytoGreen®-BioBooster	6	3,5% 39 g/l			·									×	5	1,1	Vegetables/Fruits/Grapes 0,3-1 I/ha	
									MPI	K-Fe	NPK-Fertilizer Liquids	er Lid	quid	(0)				
DhutoGreen-NDK 12-4-6	÷		4%	%9	T	Γ		0.01%	0 0000	3 %d0 0	0.01% 0.001%	0 % 100	0.01%		5	1 0	4rable crons/Venetables/Erritits/Ornamentals_2 – 8 (/ha	
PhytoGreen-NPK 8-8-6			48 g/l 8%;	73 g/l 6%	ϯ	1	Ť	0.01%	0.005%	-	0.01%	0	0.01%	+	6.5		Arable crops/Veoetables/Fruits/Ornamentals 2 – 8 /ha	
PhytoGreen®-NPK 5-20-5		97 g/l 5,0% 65 g/l	97 g/l 20% 260 g/l	73 g/ 5% 65 g/	1										1,2		Arable crops/Vegetables/Fruits/Ornamentals 5 – 10 l/ha	
PhytoGreen®-NPK 7-21-7	÷		21% 279 a/l	7% 93 a/	1		l	0,02%	-	0,05% (0,05%				1,1	1,33	Arable crops/Vegetables/Fruits/Ornamentals 5 – 10 l/ha	
PhytoGreen@-NPK Plus (9-6-3+Mg+Microel.)	12	_	6,4% 80 g/l	3,2% 40 g/l		1,2% 14,4 g/l		0,03% (0,006%		0,18% 0,	0,0004 0,0 %	0,007%		2,2	1,22	Arable crops/Vegetables/Fruits/Ornamentals 2 I/ha	
PhytoGreen®-NP Liquid 7-18	13		18% 216 g/l												80	1,2	Arable crops/Vegetables/Fruits/Ornamentals 5 – 10 l/ha	
PhytoGreen®-PK Plus (0-11-7+Mg+Mn)	14		11% 132 g/l	7% 84 g/l		0,6% 7,2 g/l					0,8% 9,6 g/l				2,7	1,2	Arable crops/Vegetables/Fruits/Ornamentals 1-4 I/ha	
PhytoGreen®-HiPhos (0-30-5+Mg)	15		31% 440 g/l	5% 74 g/l	7	3,4% 48,2 g/l									2	1,44	Arable crops 2,5-5 l/ha	
PhytoGreen®-NPK Complete (Feststoff)	16	20%	8%	14%		1,2%	9,7%	0,04%	0,2%	0,02% (0,26% 0,0	0,006% 0,	0,14%		fest		Arable crops/Vegetables/Fruits/Omamentals2,5–5kg/ha	
									Bio N	NPK-F	Fertiliser	iser	Liquids	ds				
PhytoGreen®-Bio-NK	17	4% 52 g/l	0,1% 1,3 g/l	6,5% 84 g/l	0,8% 10 g/l		1% 13 g/l								5,5-6,5	ca. 1,2	5,5-6,5 ca. 1,2 Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 l/ha 07;FIBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 2-5-8	17						2,0% 30 g/l	0,0005 %	_	_	0,1% 1,5 g/l	- ⁻	0,1% 5 g/l	×	5,5-6,5	ca. 1,3	ca. 1.3 Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 l/ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 3-4-3	17	3,0% 38 g/l	4% 51 g/l	3,0% 38 g/l				0,01%	_	0,2% 3 g/l	0,2% 3 g/l	0 0	3 g/l	×	5,5-6,5	ca. 1,4	ca. 1.4 Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 //ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 4-1-5	17		1% 13 g/l				1% 13 g/I	0,0004 %			0,1% 1,3 g/l	, ¹	0,1% 1,3 g/l	×	5,5-6,5	ca. 1,3	ca. 1,3 Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 //ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 8-3-4	17	_	3% 45 g/l		3%; 50 g/l	0,1% 1,5 g/l	0,7% 9g/l		0,1% 1,5 g/l	0,1% 1,5 g/l	0,1% 1,5 g/l	, ¹	0,1% 1,5 g/l	×	5,5-6,5		ca. 1,4 Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 //ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 3-4-3	18	2,5% 30 g/l	3,3% 40 g/l	2,5% 30 g/l	0,05% 0,6 g/l	1% 12 g/I	0,3% 3,6 g/l	10 mg/l	70 mg/l	4 mg/l 2	20 mg/l	70	70 mg/l		5,5-6,5		ca. 1,2 Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 //ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 8-3-2	18		2,4% 30 g/l	_			_	10 mg/l (60 mg/l	5 mg/l 2	20 mg/l	50	50 mg/l		5,5-6,5	6 ca. 1,2	Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 //ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 7-2-2	18	5,8% 70 g/l	1,7% 20 g/l	1,6% 20 g/l	0,05% (0,6 g/l		1,0% 13 g/l	6 mg/l	30 mg/l	2 mg/l	12 mg/l	24	24 mg/l		5,5-6,5	i ca. 1,2	Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 V/ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 6-2-2	18						0,02% 0,3g/l	5 mg/l	40 mg/l	5 mg/l 2	20 mg/l	30	30 mg/l		5,5-6,5	ca. 1,2	Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 l/ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Bio-NPK 5-2-5	18	4,1% 50 g/l	1,6% 20 g/l	4,1% 50 g/l	0,3% 4 g/l		0,02% 0,3g/l	6 mg/l	40 mg/l	4 mg/l	16 mg/l	30	30 mg/l		5,5-6,5		ca. 1,2 Arable crops/Vegetables/Fruits/Grapes/Ornamentals 4-8 //ha 07;FiBL;Xgen	-;Xgen
									Julti	ole N	Multiple Nutrient Fertilizer	nt Fe	ertilia	zer				
PhytoGreen®-Ca-Mg-B	24				7,15% 100g/l			0,3% 4,2g/l							4	1,4	Vegetables/ Fruits 2-4 l/ha	
PhytoGreen®-MagS	25					18% 289g/l	22% 360g/l								10-11	1,6	Arable crops/Fruits/Grapes 1-5 l/ha	
PhytoGreen®-ManganeseNitrate	26	7,7% 119 g/l									15% 235g/I				ca. 1,5	1,55	Arable crops/Vegetables/Fruits 1-2 I/ha	
PhytoGreen®-Silicon	27		5% 67 g/l	13% 174 g/l									-' 94	7% 94 g/l	12	1,25	All cultures 1-3 //ha	
PhytoGreen®-MultimicroMix Carbo	28					6,60%	6,40%	0,30%	0,50%	1,50%	1,50% 0	0,10% 2	2,00%			2 1,34	1,34 All cultures: foliar 5 l/ha, soil 4-8 l/ha	
									Single	le Nu	Nutrient Fertilizer	nt Fe	rtiliz	er				
PhytoGreen®-Boron	29							11% 150 g/l					┝──┨		ca. 8	1,36	Arable crops/Vegetables/Fruits/Grapes 1-3 //ha 07;FiBL;Xgen	-;Xgen
PhytoGreen®-Calciumborate	29				12% 173 g/l			7% 101 g/l					_	_	7,5	1,44	1,44 Arable crops/Vegetables/Fruits/Grapes 1-3 I/ha	

289,010 299,010 299	0.007% 5% 5% 5% 5% 5% 5% 5% 5% 5% 10.9% 15% 15%	215 g/l 2000/l 2	12 12 9,3 7 1,3 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,2 1,3 1,4 1,5 1,6 1,6 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,5 1,1,5 1,1,5 1,1,5 1,1,5 1,1,5 1,1,6 1,1,7 1,1,7 1,1,7 1,1,7 1,1,10 1,1,10 1,1,10 1,10 1,10 1,10 1,10 <tr tr=""> <tr tr=""></tr></tr>	1,12 1,47 1,47 1,16 1,116 1,117 1,117 1,117 1,117 1,12 1,122 1,132 1,132 1,132 1,132 1,138	ables/Fruits/Grapes 2-4 Uha ables/Fruits/Grapes 2-4 Uha a - 0,75 Uha - 0,75 Uha - 0,75 Uha - 0,75 Uha - 0,75 Uha Grapes 2-3 Uha Grapes 2-3 Uha Grapes/Ornamentals 3-5 Uha ables/Fruits/Grapes 3-5 Uha ables/Fruits/Grapes 2-4 Uha ables/Fruits/Grapes/Ornamentals 2-3 Uha ables/Fruits/Grapes/Ornamentals 2-4 Uha	07;FIBL:BCS 07;FIBL.Xgen;BCS 07;FIBL:Xgen;BCS 07;FIBL:Xgen;BCS 07;FIBL:Xgen 07;FIBL:Xgen 07;FIBL:Xgen 07;FIBL:Xgen 07;FIBL:Xgen 07;FIBL:Xgen
30 $0.6^{3/1}$ $130^{3/1}$ $130^{3/1}$ 0.0^{1} 31 31 $19^{3/1}$ $19^{3/1}$ 0^{10} 31 1^{10} 1^{10} 1^{10} 0^{10} 31 1^{10} 1^{10} 1^{10} 0^{10} 31 1^{10} 1^{10} 1^{10} 1^{10} 32 1^{10} 1^{10} 1^{10} 1^{10} 33 3^{10} 2^{24} 1^{10} 1^{10} 1^{10} 33 3^{10} 2^{24} 1^{10} 1^{10} 1^{10} 1^{10} 33 3^{10} 2^{10} 1^{10} 1^{10} 1^{10} 1^{10} 1^{10} 34 1^{10} 1^{10} 1^{10} 1^{10} 1^{10} 1^{10} 1^{10} 35 1^{10} 1^{10} 1^{10} 1^{10} 1^{10} 1^{10} 1^{10} 36^{10} 1^{10} 1^{10} 1^{10} 1^{10}	0.007% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5	40% 50%		1,35 1,47 1,16 1,16 1,14 1,17 1,17 1,17 1,17 1,17 1,18 1,18 1,18	lles/Fruits/Grapes 2-4 l/ha 0.75 l/ha apes 2-3 l/ha apes 2-3 l/ha rapes/Ornamentals 3-5 l/ha rapes/Ornamentals 3-5 l/ha les/Fruits/Grapes 3-5 l/ha les/Fruits/Grapes 3-5 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha	07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen
30 31 19%: 19%: 90 31 31 9 9 9 1 19%: 90 31 31 9 9 9 1 19 19%: 19 31 31 9 9 9 1 19 19 19 32 31 9 264 1 1 10 55% 55% 33 3% 284 1 1 1 1 55% 55% 33 3% 3% 284 1 1 1 1 1 55% 34 5 1	0.007% 5% 5% 5% 58 g/l 58 g/l 58 g/l 150 g/l 150 g/l 150 g/l	100g/1		1,47 1,16 1,16 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,18 1,16 1,18 1,18 1,19 1,18 1,19 1,19 1,19 1,19 1,19 1,19 1,19 1,19 1,19 1,19 1,19 1,19 1,19 1,13 1,13 1,13 1,13 1,13 1,13 1,13	0,75 l/ha apes 2-3 l/ha apes 2-3 l/ha rapes/Ornamentals 3-5 l/ha rapes/Ornamentals 3-5 l/ha rapes/Ornamentals 3-5 l/ha les/Fruits/Grapes 2-4 l/ha les/Fruits/Grapes 3-5 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha	07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen
31 1	5% 58 g/l 58 g/l 58 g/l 58 g/l 58 g/l 10,9% 58 g/l 1150 g/l 1150 g/l		7.9 1.3 2.4 2.2 2.4 2.4 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.2 1.3 1.4 1.5 1.6 6.6 6.4 1.5	1,13 1,16 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,18 1,19 1,19 1,19 1,19 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14	0,75 l/ha apes 2-3 l/ha apes 2-3 l/ha rapes/Ornamentals 3-5 l/ha rapes/Ornamentals 3-5 l/ha les/Fruits/Grapes 2-4 l/ha les/Fruits/Grapes 3-5 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha	07 07;FiBL:Xgen;BCS 07;FiBL:Xgen;BCS 07;FiBL:Xgen;BCS 07;FiBL:Xgen;BCS 07;FiBL:Xgen;BCS 07;FiBL:Xgen 07;FiBL:Xgen 07;FiBL:Xgen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5% 5		1.3 2.4 2.5 2.4 2.4 2.5 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 3.4 </td <td>1,16 1,14 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,18 1,18 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,176 1,176 1,176 1,176 1,176 1,176 1,174 1,174 1,174 1,174 1,174 1,174 1,174 1,174</td> <td>apes 2-3 Vha apes 2-3 Vha rapes/Ornamentals 3-5 Vha rapes/Ornamentals 3-5 Vha les/Fruits/Grapes 2-4 Vha les/Fruits/Grapes/Ornamentals 1 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-4 Vha</td> <td>07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen 07;FiBL;Xgen;BCS 07;FiBL;Xgen,BCS 07;FiBL;Kgen 07;FiBL;Kgen 07;FiBL;Xgen</td>	1,16 1,14 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,17 1,18 1,18 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,176 1,176 1,176 1,176 1,176 1,176 1,174 1,174 1,174 1,174 1,174 1,174 1,174 1,174	apes 2-3 Vha apes 2-3 Vha rapes/Ornamentals 3-5 Vha rapes/Ornamentals 3-5 Vha les/Fruits/Grapes 2-4 Vha les/Fruits/Grapes/Ornamentals 1 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-4 Vha	07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen 07;FiBL;Xgen;BCS 07;FiBL;Xgen,BCS 07;FiBL;Kgen 07;FiBL;Kgen 07;FiBL;Xgen
31 31 1	5% 58 g/l 58 g/l 58 g/l 58 g/l 58 g/l 10,9% 150 g/l 110,9%		2,4 1,2 2,4 1,2 1,2 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,8 1,1,5 <td< td=""><td>1,14 1,17 1,17 1,17 1,12 1,32 1,52 1,52 1,52 1,52 1,53 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,17 1,18 1,19 1,19 1,19 1,13 1,137 1,146 1,147 1,147 1,148 1,148 1,142 1,142 1,142</td><td>apes 2-3 Vha rapes/Ornamentals 3-5 Vha rapes/Ornamentals 3-5 Vha les/Fruits/Grapes 2-4 Vha les/Fruits/Grapes 3-5 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-4 Vha</td><td>07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;BCS 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen</td></td<>	1,14 1,17 1,17 1,17 1,12 1,32 1,52 1,52 1,52 1,52 1,53 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,16 1,17 1,18 1,19 1,19 1,19 1,13 1,137 1,146 1,147 1,147 1,148 1,148 1,142 1,142 1,142	apes 2-3 Vha rapes/Ornamentals 3-5 Vha rapes/Ornamentals 3-5 Vha les/Fruits/Grapes 2-4 Vha les/Fruits/Grapes 3-5 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-3 Vha les/Fruits/Grapes/Ornamentals 2-4 Vha	07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;BCS 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	5% 58 g/l 58 g/l 58 g/l 58 g/l 58 g/l 10,9% 5% 150 g/l 10,9%		12 2,4 2,4 12,9 11,9 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,8 11,18 11,18 11,15	1,17 1,17 1,17 1,18 1,52 1,52 1,52 1,52 1,52 1,52 1,52 1,52 1,52 1,52 1,52 1,52 1,16 1,16 1,176 1,18 1,18 1,18 1,13 1,13 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14 1,14	rapes/Ornamentals 3-5 l/ha rapes/Ornamentals 3-5 l/ha lles/Fruits/Grapes 2-4 l/ha lles/Fruits/Grapes 3-5 l/ha lles/Fruits/Grapes/Ornamentals 2-3 l/ha lles/Fruits/Grapes/Ornamentals 2-3 l/ha lles/Fruits/Grapes/Ornamentals 2-4 l/ha	07;FiBL:Xgen;BCS 07;FiBL:Xgen 07;FiBL:Xgen;BCS 07;FiBL:Xgen;BCS 07;FiBL:Kgen 07;FiBL:Xgen 07;FiBL:Xgen
32 32 33 20% 33 3% 20% 33 3% 30% 20% 33 3% 33% 3% 30% 33% 3% 33% 3% 33% 3% 33% 3% 33% 3%	27% 500/1 500/1 5% 5% 5% 10.9% 150 q/1 150 q/1		2,4 7 7 12,9 6,6 6,6 6,6 6,4 6,4 7,5 8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7,8 7	1,17 1,32 1,52 1,16 1,16 1,18 1,137 1,37 1,37 1,44 1,44 1,44 1,44 1,44 1,44 1,45 1,44 1,44 1,44 1,44 1,44 1,44 1,44 1,45 1,45 1,45	rapes/Ornamentals 3-5 Vha lles/Fruits/Grapes 2-4 Vha lles/Fruits/Grapes 3-5 Vha lles/Fruits/Grapes/Ornamentals 2-3 Vha lles/Fruits/Grapes/Ornamentals 2-3 Vha lles/Fruits/Grapes/Ornamentals 2-4 Vha	07;FiBL;BCS 07;FiBL;Xgen 07;FiBL;Xgen;BCS 07;FiBL;BCS 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen
33 20% 20% 20% 10%	27%5 500q/1 5%58 q/1 5%59 g/1 150 g/1 150 g/1		7 12.0 6 13. 1.8 1.8 6.6 6 6 4 15 7 8 15 7 8 15 15 15 15 15 15 15 15 15 15 15 15 15	1,32 1,52 1,16 1,16 1,17 1,37 1,37 1,37 1,44 1,44 1,44 1,44 1,37	les/Fruits/Grapes 2-4 l/ha Jes/Fruits/Grapes 3-5 l/ha Jes/Fruits/Grapes/Ornamentals 1 l/ha Jes/Fruits/Grapes/Ornamentals 2-3 l/ha Jes/Fruits/Grapes/Ornamentals 2-4 l/ha Jes/Fruits/Grapes/Ornamentals 2-4 l/ha Jes/Fruits/Grapes/Ornamentals 2-4 l/ha Jes/Fruits/Grapes/Ornamentals 2-4 l/ha	07;FiBL;BCS 07;FiBL;Xgen;BCS 07;FiBL;BCS 07;FiBL;BCS 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			12.9 12.9 6 1,8 1,8 1,8 1,8 1,8 1,8 1,1	1,52 1,16 1,16 1,18 1,37 1,37 1,37 1,37 1,44 1,44 1,44 1,44 1,44 1,42	les/Fruits/Grapes 3-5 l/ha les/Fruits/Grapes/Omamentals 1 l/ha les/Fruits/Grapes/Omamentals 2-3 l/ha les/Fruits/Grapes/Omamentals 2-4 l/ha les/Fruits/Grapes/Omamentals 2-4 l/ha les/Fruits/Grapes/Omamentals2-5 l/ha les/Fruits/Grapes/Omamentals2-5 l/ha les/Fruits/Grapes/Omamentals2-5 l/ha	07;FiBL;Xgen 07;FiBL;Xgen;BCS 07;FiBL;BCS 07;FiBL;BCS 07;FiBL;Xgen 07;FiBL;Xgen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6 1,8 6,6 6,4 6,4 1,5 7 8 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5 1,5	1,83 1,16 1,18 1,37 1,37 1,37 1,37 1,44 1,44 1,44 1,42 1,42	les/Fruits/Grapes/Ornamentals 1 //ha Jles/Fruits/Grapes/Ornamentals 2-3 //ha Ales/Fruits/Grapes/Ornamentals 2-4 //ha Jles/Fruits/Grapes/Ornamentals 2-4 //ha Jles/Fruits/Grapes/Ornamentals 2-4 //ha Jles/Fruits/Grapes/Ornamentals 2-4 //ha Jles/Fruits/Grapes/Ornamentals 2-4 //ha	07;FiBL;Xgen;BCS 07;FiBL;Xgen;BCS 07;FiBL;BCS 07;FiBL;Xgen 07;FiBL;Xgen 07;FiBL;Xgen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			1,8 1,8 6,6 6,4 6,4 6,4 1,5 1,5 7-8 1,6 7-8 1,6 7-8 1,6 7-8 1,6 7-8 1,6 7-8 1,6 7-8 1,7 7-8 1,7 7-8 1,7 7-8 1,7 7-8 1,7 7-8 1,7 7-8 1,7 8 1,9 9 9	1,16 1,37 1,37 1,37 1,19 1,44 1,44 1,37 1,37	les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha les/Fruits/Grapes/Ornamentals2-5 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha	07;FIBL;Xgen;BCS 07;FIBL;BCS 07;FIBL;Xgen 07;FIBL;Xgen 07;FIBL;Xgen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			6,6 6,4 1,5 1,5 7-8 7-8 8 8 8 9	1,18 1,37 1,37 1,19 1,19 1,44 1,37 1,42 1,42	les/Fruits/Grapes/Ornamentals 2-3 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha les/Fruits/Grapes/Ornamentals2-5 l/ha les/Fruits/Grapes/Ornamentals2-5 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha les 0,25 l/ha	07;FIBL;BCS 07;FIBL;Xgen 07;FIBLXgen 07;FIBLXgen
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			64 64 15 78 8 8 9	1,37 1,3 1,19 1,44 1,37 1,37 1,74	les/Fruits/Grapes/Ornamentals 2-4 l/ha bles/Fruits/Grapes/Ornamentals 2-4 l/ha bles/Fruits/Grapes/Ornamentals 2-4 l/ha bles/Fruits/Grapes/Ornamentals 2-4 l/ha bles 0.25 l/ha	07;FiBL;BCS 07;FiBL;Xgen 07;FiBL 07;FiBL
35 6% 71 $5,4\%$ 71 35 $80_{3/1}$ 3 $3,5\%$ $4,6\%$ 1 35 35 $3,5\%$ $4,8\%$ 1 36 37 $3,5\%$ $4,8,9\%$ 1 37 38 $3,19,6\%$ $3,5\%$ $4,8,9\%$ 38 37 $3,19,6\%$ $3,5\%$ 38 $3,19,1\%$ $3,5\%$ $3,5\%$ 38 $3,19,1\%$ $3,5\%$ 38 $3,19,1\%$ $3,5\%$ 38 $3,19,1\%$ $3,5\%$ 38 $3,19,1\%$ $3,5\%$ 38 $3,10,1\%$ $3,5\%$ $3,10,1\%$ $3,10,$			6,4 1,5 1,6 1,0 7-8 8 8 9	1,3 1,19 1,44 1,37 1,42 1,74	les/Fruits/Grapes/Ornamentals 2-4 l/ha bles/Fruits/Grapes/Ornamentals2- 5 l/ha bles/Fruits/Grapes/Ornamentals 2-4 l/ha bles 0,25 l/ha	07;FIBL;BCS 07;FIBL;Xgen 07;FIBL 07;FIBLXgen
35 3% 4% 35 356µ1 4% 35 20% 4% 36 20% 4% 37 20% 4% 38 20% 800µ1 38 1 56% 38 1 1 38 1 1 38 1 1 38 1 1 38 1 1 38 1 1 38 1 1	215.		1. 10 7. 10 8 8 9 9	1,19 1,44 1,37 1,42 1,74	les/Fruits/Grapes/Ornamentals2- 5 l/ha les/Fruits/Grapes/Ornamentals 2-4 l/ha les 0,25 l/ha	07;FiBL;BCS 07;FiBL;Xgen 07;FiBL 07;FiBL;Xgen
35 20% 36 20% 36 301g/l 37 301g/l 38 31 38 31 38 31 38 31 38 31 38 31 38 31 38 31 38 31	215.		10 7-8 8 8	1,44 1,37 1,42 1,74	les/Fruits/Grapes/Ornamentals 2-4 l/ha oles 0,25 l/ha	07;FiBL;Xgen 07;FiBL 07;FiBL;Xgen
36 36 56% 37 37 56% 38 8000/1 8000/1 38 38 38 38 38 38 38 38 38 38 38 38	215		6 8 -2	1,37 1,42 1,74	les 0,25 i/ha	07;FiBL;Xgen 07;FiBL 07;FiBL;Xgen
37 56% 38 9 38 9004/1 38 9004/1 38 9004/1 38 9004/1 38 9004/1 38 9004/1 38 9004/1 38 9004/1			8 6	1,42 all 4 1,74 all 4		07;FiBL;Xgen 07;FiBL;Xgen
38 38 38 38 38 38 38 38 38 38 38 38 38 3		40% 700g/l 5%	6	1,74 all (ll cultures 0,5-2 l/ha	07;FiBL;Xgen
38 38 38 39 30 310 30 310 30 310 30 310 30 310 310		5%)
38 38 0.000		58 g/l	1,5	1,17	all cultures 2-5 l/ha	07;FiBL;Xgen;BCS
C		5% 58 g/l	5,5		1,16 all cultures 2-5 l/ha	
		iar	application	uo		
		4,5% 70 g/l	10	1,58	Cereal 1-2 l/ha	
1% 12 g/I		2% 25 g/l	2,9	1,26	Cereal 2-4 I/ha	
5% 22		6% 93 g/l		1,5 Col	Corn 2-3 l/ha	07
0,3% 1% 4% 4%			2,7	1,24	Corn 4-6 l/ha	
5% 20% 67,5 g/l 270 g/l			6	6,5 1,35 Fru	Fruits/Grapes: 2-3 l/ha	
10,0% 150 g/l		0.02% 0.3 g/l		1,5 Fru	Fruits/Grapes 3-9 l/ha	
2,6% 5,8% 17,6% 45g/l 300 g/l 300 g/l	17,6% 300 g/l		10	1,7 Kai	Kartoffeln: 2 I/ha	
9,2% 4,1% 4,8% 74,9/l		5% g/l		1,5 Ra _l	Rapeseed 2-3 l/ha	07
PhytoGreen®-RapeseedMix Carbo 45 1,2% 2,8% 0,5% 2% 0,13 133,3g/l 32,g/l 6,g/l 22,g/l 1 22,g/l 1 22,g/l 1 1		0,13% 1 g/l	3,5	1,15	Rapeseed 5-7 <i>I</i> /ha	
1,6% 4,6% 20 g/l		0,8% 5,5% 10 g/l 70 g/l	8	1,3 Zitr	Zitruspflanzen 2,5-3,5 l/ha	
Culture Specific		Fertilizer for seed t	treatment	ht		
2,5% 0,2% 0,6% 4,4% 32g/l 2,5g/l 2,5g/l 7g/l 56g/			×	1,2 200	200ml/100kg seeds	07;FiBL;Xgen
0,1% 2% 1,6% 1% 2% 0,2% 1,2% 12% 12% 1,5g/1 32g/1 28 g/1 16g/1 32g/1 3g/1 20g/1 200g/1	12% 200g/1	-	×	1,6 10	100ml/100kg seeds	07;FiBL;Xgen
39 150 0,08% 1% 1% 1,8% 0,4% 1.2% 3% 0 150/ 1a/ 15a/ 13a/ 23a/ 5,5a/ 17a/ 40a/ 2	3% 40a/l		×	1,25 20	200ml/t potato shoots	07;FiBL;Xgen
2,3%0 U,3%0 U,2%0 U,1%0 I,3% 20a/l 2a/l 2a/l 0a/l 20a	3,1% 4% U,1 40~/1 52~1 0.0	1% 3,1% 2a/i 40a/i	×	1,3 200	ت 1,0 - 1,0	07;FiBL;Xgen

Plantosol[®]/ Bio-Plantosol[®]

ORGANIC NITROGEN FERTILISER, LIQUID

Composition:

Plantosol [®] :	9 % organic bound nitrogen (108 g N/I)
	enzymatic hydrolysed collagen
Bio-Plantosol [®] :	3,5 % organic bound nitrogen (44 g N/I);
	enzymatic hydrolysed organic plant material with 17% free amino acids

Mode of action and advantages:

- Nitrogen in form of amino acids = directly available N via leaves
- Supports plant growth especially during stress situations
- Stimulate cell division and root formation

Recommendations for use and application rates: Reduction of stress in case of dryness, waterlogging, hail etc.: 2-3 l/ha as foliar General for all cultures: application. Growth stimulation: 2-6 l/ha as soil application. Improvement of efficacy of plant protection: 150-300 ml/100 I application broth in addition to plant protection measures. For root formation and before new planting: Plunge the plant into a 1% solution or, Strawberries, vegetables, to take root, water it with 5-10 l/ha 7-10 days after planting. tobacco, tree nursery: Pip fruit: Foliar application. Before blooming period: 2 applications with 5-7.5 l/ha. To reduce fruit russeting and against fruit falling before harvest: apply 5-7.5 l/ha from the beginning of August 5-6 times. Stone fruit: Foliar application. For healthy growth as of blooming period: 3 times 5-7.5 I/ha at an interval of 8 days. Against symptoms caused by sharka as of blooming period: 3 times 5-7.5 l/ha at an interval of 30 days. To achieve uniform ripeness: 4 foliar applications with 3-5l/ha (0,5-1%). Vine: **Ornamental plants:** For leaf quality and growth: 4 times 100-300 ml per 100 l water as foliar application. Mediterranean plants, citrus: Foliar applications with 0,5-1%. Arable crops: 1-2 l/ha as foliar application, especially during unfavourable weather conditions.

Technical details:

Plantosol[®]: Bio-Plantosol[®]: Density: 1,2 kg/l; pH = 5,5 Density: 1,1 kg/l; pH = 4,0 In compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

Miscibility: Plantosol[®] / Bio-Plantosol[®] can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes:

1 ltr. · 10 ltr. · 200 ltr. · 1000 ltr.

PhytoGreen[®]-Booster / Bio-Booster

ORGANIC NITROGEN FERTILISER, LIQUID

Composition:

PhytoGreen[®]-Booster:

PhytoGreen[®]-BioBooster:

8% organic nitrogen (96 g N/I); with seaweed extract, humic and fulvic acids and more than 15% free amino acids 3,5% organic nitrogen (39 g N/I); vegetable enzymatic hydrolysed protein; with seaweed extract, humic acids and more than 17% free amino acids

Mode of action and advantages:

- Combine amino acids and seaweed for quick regeneration and growth
- High vitality and health boost for all plants- especially under unfavorable growth conditions
- Guarantee high crop quality
- For foliar application or in fertigation

Recommendations for use and application rates:

E E V I I E V I I E N
For the light building of bunches of grapes, uniform ripeness and high must quality. Foliar application before bloom: 2 times 0.3-0.5 l/ha at an interval of 8-10 days; after bloom (when blossom caps have been completely dropped): 0.5 l/ha. Fertigation via the soil: in new and older plants, after the start of vegetation period use 3 l/ha, to be repeated 2-3 times at intervals of 10-14 days.
Foliar application: before blooming period 2-3 applications with 0.4-0.5 l/ha; from first fruit appearing until fruit growth 2-3 times 3 l/ha.
Foliar application: after bedding out 0.3-0.5 l/ha. Fertigation: after bedding out 0.3 l/1000m ² .
For root formation and before new planting: Plunge the plant into a 1% solution, Foliar application: 7-10 days after planting to start growth apply 0.3 l/ha; before and after bloom apply 0.5 l/ha. Fertigation: After planting 3 l/ha; during bloom 3 l/ha, during fruit growth 2-3 times 3 l/ha.
Foliar application: for healthy growth as of blooming period: 3 times 0.4-0.5 I/ ha at an interval of 8 days. Against symptoms caused by sharka as of blooming period: 3 times 0.5-1.0 I/ha at an interval of 20 days.

Technical details:

PhytoGreen®-Booster:Density: 1,2 kg/l; pH = 5PhytoGreen®-BioBooster:Density: 1,1 kg/l; pH = 5

Miscibility:

PhytoGreen[®]-Booster/ BioBooster can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes:

1 ltr. \cdot 5 ltr. \cdot 200 ltr.

PhytoGreen[®]-BioBooster is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

9

PhytoGreen[®]-NPK Standard Formulations

NPK FERTILISER LIQUIDS with trace elements

Mode of action and advantages:

- NPK fertiliser with trace elements
- The well balanced nutrient supply for plants
- For healthy growth and optimized photosynthesis
- Well-tolerated

Composition (all nutrients in water soluble form; Fe, Cu, Mn and Zn as chelates of EDTA):

	PhytoGreen [®] - NPK 12-4-6	PhytoGreen [®] - NPK 8-8-6	PhytoGreen [®] - NPK 5-20-5	PhytoGreen [®] - NPK 7-21-7
Nitrogen (N)	12% (145 g/l)	8% (97 g/l N total: 2,4% ammonium-N; 1,8% nitrate-N; 3,8% carbamide N)	5% (65 g/l carbamide-N)	7% (93 g/l N total: 14,5 g/l nitrate- N, 78,5 g/l carbamide-N)
Phosphate (P ₂ O ₅)	4% (48 g/l)	8% (97 g/l)	20% (260 g/l)	21% (279 g/l)
Potassium (K,O)	6% (73 g/l)	6% (73 g/l)	5% (65 g/l)	7% (93 g/l)
Boron (B)	0,01%	0,01%		0,02%
ron (Fe)	0,02%			0,05%
Copper (Cu)	0,002%	0,005%		
/langanese (Mn)	0,01%	0,01%		0,05%
Aolybdenum (Mo)	0,001%			
Linc (Zn)	0,002%	0,01%		
Density	1,2	1,2	1,3	1,33
ъH	5	5	1,2	1,1

Recommendations for use and application rates:

General:	Via the soil: 0,3-0,5%ig, as foliar application 0,5-1%ig from beginning of vegetation, reapply according to requirements of the culture.		
Berries:	As oliar application: 0,5-1% at beginning of vegetation, potentially reapply. Do not apply during blooming period.		
Pip fruit:	As a foliar application: 0,5-1% from the beginning of vegetation up, potentially reapply. Do not apply during bloo- ming period. In rusting sensitive varieties do not apply during periods critical for rust development.		
Stone fruit:	As foliar application: 0,5-1% from the beginning of vegetation up, potentially reapply (not during blooming period).		
Vegetables:	For initial development: 2-4 foliar applications from 2-leaf-stage up with 0,2-0,4%. For nutrient supply and output: 2 applications with 5-8 l/ha during main growth period. Under glass: several foliar and soil applications with 0,3-0,5%		
Arable crops:	To stabilize the culture, as alternative to adhesives in mixtures: 2-3 l/ha for foliar application.		
Cereals:	1-2 foliar applications with 4-8 I/ha from beginning of vegetation.		
Sugar beet:	1-2 foliar applications with 4-6 I/ha from from 5-leaf-stage until meeting across the rows.		
Ornamentals, mediter- ranean plants, citrus:	Foliar applications with 0,2-0,4% ig according to requirements of the culture.		

Miscibility: PhytoGreen[®]-NPK standard formulations can be mixed with usual plant protection products and foliar fertilisers.

PhytoGreen®-NPK Plus

NPK FERTILISER LIQUID 12-8-4 with magnesium and trace elements

Composition:

12.0% w/v N (120 g/l nitrogen), 8.0% w/v P₂O₅ (80 g/l water soluble phosporus), 4.0% w/v K₂O (40 g/l water soluble potassium), 2.4% w/v MgO (water soluble magnesium), 0.04% w/v B (water soluble boron), 0.008% w/v Cu (water soluble copper), 0.007% w/v Fe (water soluble iron), 0.228% w/v Mn (water soluble magnese), 0.0005% w/v Mo (water soluble molybdenum), 0.009% w/v Zn (water soluble zinc)

Mode of action and advantages:

- A unique NPK formulation blended with Magnesium and trace elements
- Well suitable for nutrient supply in vinegrowing
- For quick nutrient delivery during periods of high growth
- Excellent uptake of trace elements due to the contained organic acids

Recommendations for use and application rates:

PhytoGreen[®]-NPK Plus is suitable for use in a wide range of crops providing a source of rapidly absorbed nutrients during periods of rapid growth and development or at times of crop stress. PhytoGreen[®]-NPK Plus is formulated with its own adjuvant system for improved tank-mixing compatibility, uptake and translocation of the metal ions within the plant.

Application rate: Use 2 I/ha in 200 litres of water. Repeat every 7-14 days as necessary.

Timing: Apply as and when required to provide the plant with additional nutrients in adverse growing conditions, when the crop is under stress and on crops with high yield/quality potential.

Technical details:

Density: 1,2 kg/l pH = 2,2

Miscibility: PhytoGreen[®]-NPK Plus can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes: 10 ltr. · 200 ltr. · 1000 ltr.

12

PhytoGreen®-NP-Liquid 7-18

NP FERTILISER SOLUTION 7-18

Composition:

7 % N total nitrogen (84 g/l as ammonium-N) 18 % P_2O_5 water soluble phosporus (216 g/l)

Mode of action and advantages:

- Nutrient solution with nitrogen and phosphate
- Easy handling
- Well suitable for Cultan Method and soil injection

Product details:

Appearance:

Clear, brownish liquid of urea and diammoniumphosphate (DAP) in water.

Further information: No hazardous good (guideline 67/548/EWG).

Storage: 0 °C - 80 °C

Technical details:

Density: ca. 1,2 t/m³ pH: 8 Filtration residue: max. 0,01%

Pack sizes: 1000 I. More pack sizes upon request.

PhytoGreen®-PK Plus

PK FERTILISER LIQUID 11-7 with magnesium and manganese

Composition:

11% P ₂ O ₅	(132 g/l water soluble phosporus)
7% K,Õ	(84 g/l water soluble potassium)
1% M̄gO	(12 g/l water soluble magnesium oxide)
0,8% Mn	(9,6 g/l water soluble manganese)

Mode of action and advantages:

- PK fertiliser with magnesium and manganes for direct nutrient supply.
- Contained carboxylic acids lead to a quick uptake and transport of nutrients.
- Promotes growth especially at the beginning of the vegetation period.

Recommendations for use and application rates:

PhytoGreen[®]-PK Plus has to be brought out as a foliar application with 0,5% (500 ml PhytoGreen[®]-PK Plus/ 100 I water) as soon as enough leaves are available. Adapt water amount to a throughout coverage of the full leave area. Especially at the beginning of the vegetation period, PhytoGreen[®]-PK Plus enhances root development very effectively. Repeat treatment due to nutrient demands of the culture. In general, 1-2 applications are recommended.

PhytoGreen[®]-PK Plus can be applied in all spray droplet sizes. The treatment is recommended for the early morning, the late evening or on cloudy days. Apply on dry leaves and at least two hours before irrigation or rain.

Technical details:

Density: 1,2 kg/l pH = 2,7

Miscibility: PhytoGreen[®]-PK Plus can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes: 10 ltr. · 200 ltr. · 1000 ltr.

14

PhytoGreen®-HiPhos

PK FERTILISER SOLUTION with Magnesium 31-5 (5,6)

Composition:

30,6 % P₂O₅ (440 g/l water soluble phosphate)
5,1 % K₂O (74 g/l water soluble potassium oxide)
5,6 % MgO (80 g/l water soluble magnesium oxide)

Mode of action and advantages:

- Water soluble phosphate for foliar application directly available to plants.
- With magnesium and manganes for arable crops.
- For quick nutrient supply in times of high demand.

Recommendations for use and application rates:

General:	PhytoGreen®-HiPhos has to be applied as foliar fertiliser in at least 200 I Water/ha.
Potatoes:	To encourage tuber numbers, apply 10 l/ha in at least 200 litres of water at tuber initia- tion. To encourage bulking, apply 5 l/ha in at least 200 litres of water at the onset of bulking and repeat at least once during bulking. The timing of the 2nd application should be based on tissue analysis and should not be less than 10 days after the 1st.
Cereals:	Apply 5 l/ha in at least 200 litres of water at tillering and repeat at 10 - 14 day intervals as required. An application between ear emergence and the end of flowering may also be beneficial.
Oilseed rape:	Apply 2.5 - 5.0 l/ha in at least 200 litres of water. Apply in the autumn when the crop has 6 - 8 leaves and repeat in the spring at early stem extension.
Peas and beans:	Apply 5 I/ha in at least 200 litres of water when the crop is 10 - 15 cm high and repeat after 10 - 14 days.
Sugar beet:	Apply 5 l/ha in at least 200 litres of water at the 4 - 6 leaf stage. Repeat at 10 - 14 day
Corn:	Apply 2.5 - 5.0 l/ha in at least 200 litres of water at the 4 - 8 leaf stage. Repeat at 10 - 14 day intervals if required.

Technical details:

Density: 1,44 kg/l pH = 2

Miscibility: Do not mix with the fungicide Corbel, with fertilisers containing boron or with alkaline products.

Pack sizes: 10 ltr. · 200 ltr. · 1000 ltr.

15

PhytoGreen®-NPK Complete

NPK FERTILISER 20-8-14 with Magnesium, Sulphur and trace elements

Composition:

20,0 % **N** total nitrogen (0.88% as nitrate, 6.23% as ammonium and 12.9% as carbamide), **8,0** % P_2O_5 (water soluble phosphorus), **14,0** % K_2O (water soluble potassium oxide), **9,7** % **S** (water soluble sulphur), **2,0** % **MgO** (water soluble magnesium oxide), **0,26** % **Manganese***, **0,20% copper***, **0,14** % zinc*, **0,04% boron**, **0,02% iron***, **0,006% molybdenum.** All nutrients water soluble, * as chelate of EDTA.

Mode of action and advantages:

- Fully water soluble granules with all important nutrients for foliar application.
- May be used as a routine nutrient source for maintaining healthy crop growth.
- Rapidly absorbed provides additional nutrients at a time of crop stress or during periods of particularly rapid growth and development.

Recommendations for use and application rates:

Rates of use:

PhytoGreen[®]-NPK Complete is used for foliar application or in drip irrigation. Foliar application: 2.5 - 5.0 kg PhytoGreen[®]-NPK Complete/ha in at least 200 l/ha water. Fertigation: $0.5 - 2^{\circ}/_{\infty}$ (50 - 200 g/100 l water)

Timing:

Apply PhytoGreen[®]-NPK Complete when required or as indicated by the results of tissue analysis, once the crop has sufficient leaf area present to absorb the spray (e.g. the 3-leaf stage in cereals). Repeat at 7-14 day intervals as required.

Technical details:

Miscibility: PhytoGreen[®]-NPK Complete can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes: 1 kg ● 10 kg ● 25 kg

PhytoGreen[®]-Bio N(P)K´s based on sugar beet vinasse

ORGANIC MINERAL N(P)K-FERTILISER LIQUIDS with trace elements

Mode of action and advantages:

- Provide natural nutrients.
- Raw materials: sugar beet vinasse, enzymatic hydrolysed animal proteins (7-2-2 and 8-3-4 only), stone dust, certified micronutrient fertilisers, seaweed.
- Direct uptake supports growth, fruit development and yield.
- Available in various compositions.

Composition	in Sh	2 . 2		1201	5050
	PhytoGreen [®] - Bio-NK 4-6,5	PhytoGreen [®] - Bio-NPK 2-5-8	PhytoGreen [®] - Bio-NPK 3-4-3	PhytoGreen [®] - Bio- NPK 4-1-5	PhytoGreen [®] - Bio-NPK 8-3-4
Nitrogen (N)	4% (52 g/l)*	2% (33 g/l)*	3% (38 g/l)*	4% (50 g/l)*	5,9% (80 g/l)**
Phosphate (P ₂ O ₅)	0,2% (3 g/l)	5% (67 g/l)	4% (51 g/l)	1% (13 g/l)	2,3% (30 g/l)
Potassium (K ₂ O)	7% (91 g/l)	8% (112 g/l)	3% (38 g/l)	5% (64 g/l)	3% (40 g/l)
Calcium (Ca)	0,8% (10 g/l)	5% (80 g/l)	5% (60 g/l)	1,5% (20 g/l)	3% (40 g/l)
Magnesium (Mg)		0,1% (1,5 g/l)	0,1% (1,5 g/l)	0,3% (3,9 g/l)	0,1% (1,4 g/l)
Sulphur (S)	1,3% (17 g/l)	2% (30 g/l)	1% (12 g/l)	1% (13 g/l)	0,6% (8,4 g/l)
Boron (B)			110 mg/l	5 mg/l	
Iron (Fe)		0,1% (1,5 g/l)	0,2% (3 g/l)	0,1% (1,3 g/l)	0,1% (1,4 g/l)
Copper (Cu)		0,1% (1,5 g/l)	0,1% (1,5 g/l)		0,1% (1,4 g/l)
Manganese (Mn)		0,1% (1,5 g/l)	0,2% (3 g/l)	0,1% (1,3 g/l)	0,1% (1,4 g/l)
Zinc (Zn)		0,1% (1,5 g/l)	0,2% (3 g/l)	0,1% (1,3 g/l)	0,1% (1,4 g/l)
Seaweed	no	yes	yes	yes	yes

* N out of sugar beet vinasse; ** N out of sugar beet vinasse + enzymatic hydrolysed animal proteins

Recommendations for use and application rates:

General:	Vinasse can be used for soil application in any culture. When using conventional irrigation technology, the con- centration should not exceed 5 %. As direct soil application in orchards and viticulture the product can also be applied in higher concentration. PhytoGreen®-Bio NPK's can also be used for foliar application but may cause spraying stains. Application rate 0,4-1,5%. Dosage in drip or sub-irrigation: 0,1-0,25% every 3-10 days (every 10 days at the beginning of the culture, every 3 days in the main growth phase).
Pip fruit:	Fertigation: max. 5%. Foliar application: 0.5-1% from the beginning of vegetation up, potentially reapply. In rusting sensitive varieties do not apply during periods critical for rust development.
Stone fruit and berries:	Fertigation: max. 5%. Foliar application: 0.5-1% from the beginning of vegetation up, potentially reapply.
Vine:	Fertigation: max. 5%. Foliar application: 0.5-1% from the beginning of vegetation up, potentially reapply.
Vegetables:	Fertigation: max. 5%. Foliar application: for initial development: 2-4 applications from 2-leaf-stage up with 0.2-0.4%. For nutrient supply and output: 2-4 applications with 5-8 l/ha during main growth period.
Cereals:	1-2 foliar applications with 4-8 l/ha from beginning of vegetation up.
Zuckerrüben:	1-2 foliar applications with 4-6 I/ha from 5-6-leaf-stage until meeting across the rows.
Maize:	1-2 foliar applications with 4-6 l/ha.
Ornamentals, mediterranean plants, citrus:	As foliar or soil application with 0,4-0,8%, reapply according to the demands of the culture.

In compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

PhytoGreen[®]-Bio NPK's without sugar beet vinasse purely vegetable

Mode of action and advantages:

ORGANIC NPK-FERTILISER LIQUIDS

- Vegetable raw materials from the food industry (fermented and enzymatically hydrolysed).
- High quality end products containing water soluble nutrients including phosphor.
- Free of residues.

Compositio	one	N 35	0000	. 3.2	, °) ,
	PhytoGreen [®] - Bio-NPK 3-4-3	PhytoGreen [®] - Bio-NPK 5-2-5	PhytoGreen [®] - Bio-NPK 6-2-2	PhytoGreen [®] - Bio-NPK 7-2-2	PhytoGreen [®] - Bio-NPK 8-3-2
Nitrogen (N)	2,5% (30 g/l)	4,1% (50 g/l)	5,0 % (60 g/l)	5,8% (70 g/l)	6,3% (80 g/l)
Phosphate (P_2O_5)	3,3% (40 g/l)	1,6% (20 g/l)	1,8% (20 g/l)	1,7% (20 g/l)	2,4% (30 g/l)
Potassium (K,O)	2,5% (30 g/l)	4,1% (50 g/l)	1,8% (20 g/l)	1,7% (20 g/l)	1,6% (20 g/l)
Calcium (Ca)	0,05% (0,6 g/l)	0,1% (1,3 g/l)	0,1% (1,3 g/l)	0,05% (0,6g/l)	0,1% (1,3 g/l)
Magnesium (Mg)	1,0% (12 g/l)	0,1% (1,3 g/l)	0,1% (1,3 g/l)	0,3% (3,2 g/l)	0,2% (2,6 g/l)
Sulphur (S)	0,3% (3,6 g/l)	0,6% (7 g/l)	0,6% (7 g/l)	1,0% (12 g/l)	1,0% (13 g/l)
Boron (B)	10 mg/l	6 mg/l	5 mg/l	6 mg/l	10 mg/l
Iron (Fe)	70 mg/l	40 mg/l	40 mg/l	30 mg/l	60 mg/l
Copper (Cu)	4 mg/l	4 mg/l	5 mg/l	2 mg/l	5 mg/l
Manganese (Mn)	20 mg/l	16 mg/l	20 mg/l	12 mg/l	20 mg/l
Zinc (Zn)	70 mg/l	30 mg/l	30 mg/l	24 mg/l	50 mg/l

Individual compositions are possible also (minimum order amount 1000 l).

Recommendations for use: Application via the soil: 0,8 to 1,5%. Dosage in drip or sub-irrigation: 0,1-0,25%-ig. Application via the leaf: 0,5-1,0% ig.

Repeat the application according to the nutrient demands of the culture - usually every 10 days at the beginning of the culture, every 3 days in the main growth phase. **Pot trial in basil 2018:** Basil in 0,5I-pots with 2 different substrates was drip-irrigated (3 I/h; 2 bar) with in total 600 ml water/ water + PhytoGreen[®]-Bio-NPK 8-3-1 (formulation 2020) per pot without rinsing of pipes afterwards. Fertilizer amount: 1,4 g/l with the first two irrigations and 4,2 g/l with the following seven irrigations - sum: 168 mg N, 63 mg P und 21 mg K per pot.

Result: PhytoGreen[®]-Bio-NPK 8-3-1 increased above ground biomass on both substrates by 250%. The regular addition of PhytoGreen[®]-Bio-NPK 8-3-1 did not cause any clogging in the drip irrigation system, had no appreciable effect on the pH of the soil and only led to a small increase in the EC value.

PhytoGreen[®]-Bio-NPK's without vinasse are the innovation and ecological as well as economical answer to the current challenges and questions in cultivation of vegetables, herbs and ornamentals.

Pack sizes: 8 1 | • 10 | • 200 | • 1000 | In compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

Seaweed

BIOSTIMULATOR

Composition:

Sh

PhytoGreen[®]-Algae juice:

PhytoGreen®-Algae extract: Extract of brown alga (Ascophyllum nodosum) Juice of brown alga (Ascophyllum nodosum)

Mode of action and advantages:

- Contain natural nutrients such as N, P, K, Mg, Na, B, Cu, Fe, Mn, Mo, Zn, carbohydrates, fatty acids, amino acids, vitamins A, B1, B2, 83, B6, B12, C, D3, E and K, phytohormones and auxins at a quantity which is well balanced for plants.
- Stimulate growth and root development.
- Increase quality and storage stability of crops.

Recommendations for use and application rates: 0 V O V 2515

General:	To generally strengthen, to support metabolic processes, to reinforce resistance and resistibility: 2-5 I/ha every 14-30 days as foliar application.
Vine:	To achieve uniform ripeness and must quality: 2-3 I/ha after sprouting until the grapes have reached their full size every 14 days.
Pip fruit:	Leaf development, fruit setting, yield, development of fruit buds: 5-7.5 l/ha during full flowering, finish flowering, post flowering and at hazelnut size. To achieve a plain shell, against greasiness: 2 foliar applications with 2-3 l/ha as of hazelnut size.
Stone fruit:	Several foliar applications with 2-3 I/ha from fruit setting until harvest every 14 days.
Strawberries:	Several foliar applications with 2-3 I/ha from blooming period until harvest
Fruiting vegetable, root and tuber crops, brassica, green and bulb vegetables:	Several foliar applications with 2-3 I/ha from emerging and/or planting every 14 days.
Potatoes:	Several foliar applications with 2-3 I/ha from emerging every 14 days.
Ornamental plants:	Leaf quality and growth: 200-300 ml per 100 l water every 14 days.
Arable crops:	2-4 I/ha as foliar application from emerging every 14 days.

Technical details:

PhytoGreen[®]-Algae extract: PhytoGreen[®]-Algae juice:

Density: 1,1 kg/l; pH = 6Density: 1,1 kg/l; pH ca. 5

Miscibility: The products can be mixed with usual plant protection products and foliar fertilisers.

PhytoGreen[®]-Algae juice is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany.

Pack sizes: 1 | • 10 | • 200 | • 1000 |

PhytoGreen®-BetaBoost

Organic-mineral NK-Fertiliser LIQUID 1,5-6

Composition: Plant derived amino acids, 10% betaine-glycine, seaweed extracts, 6% K2O

Vegan amino acids, betaine, seaweed extracts PLUS potassium - the optimal combination against drought and heat stress

Recommendations for use and application rates:

Vine: Two applications with 0.3-0.5 l/ha before flowering. In the event of heat or cold stress, 0.5 l/ha several times as a preventive measure. To improve the effectiveness of pesticides 0.5 l/ha. Arable crops: one or two applications with 0,5-1 l/ha in all culturesIn the event of heat or cold stress. Reapply after 7-14 days.

Plant derived amino acids out of wheat & betaine-glycine

- Organic nitrogen out of wheat to be uptaken immediately
- Betaine-glycine as biostimulator
- Supports plant growth especially in stress situations
- Raises tolerance to heat or low temperatures

Seaweed extracts

- Stimulate blooming & fruit setting
- Support plant health Dichte: -
- Complete PhytoGreen[®]-BetaBoost to an allrounder
- Contain valuable vital substances like vitamins, auxins, phytohormons

Potassium

- Raises tolerance to drought
- Increases water use efficiency
 Potassium bound on carboxylic acids guarantees an effective uptake and use within the plant metabolism

Water use efficiency

Technical details:

Density: 1,1- 1,2 kg/l; pH 7-8

Miscibility: The products can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes:

1- 1,2 kg/l; pH 7

BlackHum

BIOSTIMULATOR (PLANT RESISTANCE IMPROVER LSN 007928-00/00)

Composition:

20% humic and fulvic acids, both for soil and foliar application. Very high efficiency with small application rate.

Mode of action and advantages:

- Supports resistance and resistibility to fungal diseases.
- Enforces the epidermis of the leaves, supports root formation, improves the vitality and preserves the health of economic plants.
- Lowers the soil fatigue.
- Accelerates the uptake of nutrients, stimulates the generation of plant-own enzymes.

Recommendations for use and application rates:

For the general invigouration, improvement of nutrient uptake, promotion of microorganisms and metabolism, stimulation of root formation, enforcement of resistance and resisitibility: apply 20-30 l/ha and year via the soil or several times 250 ml BlackHum/100 l water via the leaves. Root treatment of seedlings (conifers, vine, strawberries etc.): before planting dip roots into a 0,25% solution (25 ml BlackHum in 10 l water).
For general invigoration, promotion of metabolism, strengthening of resistance and resistibility: apply 1 I Black- Hum/ha with 400-1000 I water as off pre-blossom and repeat 2-3 times according requirements until fruit co- loring.
For resistance to diseases, start of growth and quality: several foliar applications at intervals of 8-10 days using 1 I BlackHum/ha as of beginning of vegetation.
For resistance to diseases, to support combat against blight: several foliar applications with 2 I BlackHum/ha as of crop meeting across the rows, to be repeated after about 14 days.
To support resistance: several foliar applications before blossom with 1 HBlackHum/ha. By a stimulation of the plant-own resistance the onset of mildew and rot of fruits may be reduced.
To minimize herbicidal stress, to improve rooting and growth: several foliar applications using 1-2 I BlackHum/ha.
To prevent botrytis, to improve the uptake of iron: several foliar applications with 1 I BlackHum/ha as off 5-lea- ves-stage until grapes have reached their full size.
Reneration after frost, quicker development in spring: foliar application with 1,5 I BlackHum/ha in spring
To improve the generation of sugar, to stabilise the output, to stimulate the synthesis of invertase, and to improve the regulation of cell water: several foliar applications using 2 I BlackHum/ha as of crop meeting across the rows, to be repeated after about 14 days.

In compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany.

Technical details:

Density: 1,1 kg/l, pH = 12

Miscibility: The products can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes: 1 | •10 | • 200 | • 1000 | More pack sizes upon request. Winter rapeseed: Foliar application of 1,5 l/ha BlackHum 3.4.2018, picture from 18.4.2018

odur

without BlackHum with BlackHum

PhytoGreen®-HumusWP

BIOSTIMULATOR / SOIL CONDITIONER

Composition:

100% water soluble granules, for soil and foliar application

Mode of action and advantages:

- Permanent humic substance to improve soil structure, water holding capacity, cation exchange capacity (CEC) and nutrient availability.
- Growth stimulant for all agricultural and horticultural plants.
- Enhances the performance of fertilisers and reduces input-costs.
- Increases yield and improves quality of plants

Recommendations for use and application rates:

Generals:	PhytoGreen [®] -HumusWP can be used in all cultures separately or in combination with fertilizers. Very well suited for sandy or loamy soils.	
Seed treatment:	To enhace germination and root development: 1 kg PhytoGreen®- HumusWP/100 kg seeds. Treat seeds just before sowing.	
Seedlings:	To enhace root development, dip the root into a 0,05% solution (5 g PhytoGreen®-HumusWP/10 I water) before planting.	
Soil application (with fertilizer application):	Apply 6-10 kg/ha and year and mix in a depth of up to 10 cm. It is recom- mended to use it more frequently but in rather small application rates (5 x 2 kg). It can be mixed with other soil amendments like peat, sand or compost to enhance the biological activity with 0,5-1 kg/m3.	
Foliar application:	150-300 g/1000 I water every 14 days during vegetation period.	

PhytoGreen®-HumusWP (water soluble granules)

Technical details:

pH (10% solution) = 9-10

Miscibility: The products can be mixed with usual plant protection products and foliar fertilisers.

In compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany.

Pack sizes: 1 kg • 25 kg More pack sizes upon request.

PhytoGreen®-Antifreeze

PLANT ADJUVANT

Composition:

Vegetal amino acids, seaweed, herb extracts, food acids, ferments

Mode of action and advantages:

- Increases the content of "natural frost protection components" in the outer plant cells
- Onset of action within 1-2 hours after penetration
- Highest effect approximately 2 days after spraying
- Duration of effect: 7-10 days (without rain events)

Recommendations for use and application rates

Foliar application:

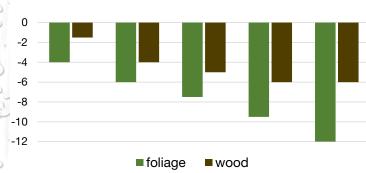
2 days before the expected frost

Wood application:

7 and 2 Tage before the expected frost

in at least 200 I water/ha (throughout coverage required); application in the early morning hours or in the evening at least 2 hours before rain / snow.

The freezing point in the plant sap decreases with increasing concentration of plant metabolites. PhytoGreen®-Antifreeze protection increases the concentration as soon as it is absorbed by the plant (effect after approx. 1-2 hours). An indirect effect starts after approximately 2 days, as the plant itself is stimulated to form its own "frost protection components". In particular, late frosts can be better survived this way.


Technical details:

Density: 1,1-1,2 kg/l; pH = 5-6

Miscibility: PhytoGreen[®]-Antifreeze can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes: 10 ltr. · 200 ltr. · 1000 ltr.

Protective effect depending on the dosage and the part of the plant (foliage/wood)

23

PHYTO SOLUTION

PhytoGreen[®]-Ca-Mg-B Carbo

STRAIGHT LIQUID INORGANIC MACRONUTRIENT FERTILISER IN SOLUTION N (CaO-MgO) 8 (10-3) WITH BORON

Composition:

8.0% total Nitrogen (N) 10.0% water-soluble Calcium Oxide (CaO) 3.0% water-soluble Magnesium Oxide (MgO) 0.3% water-soluble Boron (B)

Mode of action and advantages:

- ♦ THE biocompatible nutrient supply no phytotoxicity even with temperatures above 25°C
- High concentration of carboxylic acids within the formulation optimizes calcium integration in the cell walls
- Ensures high quality of fruit skin in pomaceous fruits due to the combination of calcium with boron and magnesium
- Guarantees uniformous fruit colouring and long post-harvest conservation stability

Recommendations for use and application rates:

Fruit trees (pome, stone, citric, etc.), strawberry:	2-4 I/ha in at least 200 I water/ha. Use 2-3 applications from end of May until beginning of fruit ripe. An N-free potassium fertilizer (PhytoGreen®-FruitColour) should then be used to promote fruit colouring.
Vegetables (tomato, pepper, lettuce, cele- ry, cabbage, broccoli, etc.):	2-4 I/ha in at least 200 I water/ha every 12-15 days from the middle of the vegetative growth (leaf vegetables) or from the development of fruits (fruit vegetables) until harvest.
Asparagus:	2-3 foliar applications with 4 l/ha in at least 200 l water/ha as soon as leaf development is sufficient.
Ornamentals:	0,4% (400 ml/ 100 l water) every 10-15 days from transplant to blooming, or to maximum plant development.

Technical details:

Density: 1,4 kg/l; pH = 4

Miscibility:

PhytoGreen[®]-Ca-Mg-B Carbo cannot be mixed with phosphate, copper or sulphur containing products.

10 ltr. · 200 ltr. · 1000 ltr.

PhytoGreen[®]-MagS

3230

MAGNESIUM FERTILISER SUSPENSION 30 WITH SULPHUR

Composition:

29,8% magnesium oxide (480 g MgO/l)

22,3% sulphur (360 g S/I)

Mode of action and advantages:

- Provides magnesium and sulphur to the plant immediately.
- The ultimate supplement to soil fertilisation!

Recommendations for use and application rates:

General:	PhytoGreen [®] -MagS is used to quickly supply magnesium and sulphur to any culture. Application rate: 1-5 l/ha in at least 200 l water/ha, repeat as necessary.	
Fruits, vine:	Several applications with 2-4 I/ha as soon as there is enough foliage.	
Hop:	Several foliar applications with 2-4 l/ha.	
Vegetables:	Several foliar applications with 2 l/ha.	
Cereals:	Several foliar applications with 2-4 I/ha from EC 30-71 (in autumn from EC 15 upwards).	
Potatoes;	Several foliar applications with 2-4 l/ha from meeting across the rows until blooming period.	
Corn:	4 I/ha from 4-leaf stage.	
Oilseed rape:	Several foliar applications with 2-4 I/ha before blooming period.	
Sugar beet:	Several foliar applications with 2-4 I/ha from meeting across the rows with fungicide treatments.	

Technical details:

Density: 1,6 kg/l, pH = 10-11

Miscibility:

PhytoGreen[®]-MagS can be mixed with usual plant protection products and foliar fertilisers.

Pack sizes:

1 | • 10 | • 200 | • 1000 | More pack sizes upon request.

PhytoGreen®-ManganeseNitrate

STRAIGHT LIQUID INORGANIC MACRONUTRIENT FERTILISER IN SOLUTION N 7,7 WITH MANGANESE

Composition:

15,0 % Mn (235 g/l water soluble manganese) 7,7 % N (119 g/l as nitrate-N)

Mode of action and advantages:

- Improves frost tolerance of winter cultures
- Provides manganese and nitrate to the plant immediately
- The ultimate supplement to soil fertilisation during low availability from the soil

General:	To provide manganese: 1 - 2 I/ha as foliar application in at least 200 I water. Several applications with small application rates increase the efficiency.		
Berries, strawberries:	s: To provide manganese, for leaf quality: 2 I/ha from beginning of flowering until harves		
Stone fruit:	2 I/ha as foliar application from beginning of fruit setting until harvest.		
Pomaceous fruit:	o provide manganese, for leaf quality: several foliar applications with 1 l/ha from end of owering (in rusting sensitive varieties only from walnut size up). For green back-ground olour: 3 foliar applications with 1 l/ha after fall of fruits in June.		
Vegetables:	To provide manganese: 1-2 foliar applications with 2 l/ha.		
Cereals:	To improve winter hardyness: 1-2 l/ha as foliar application in fall from 3-leaf-stage up. To provide manganese, to stabilise output: 1 - 2 l/ha as foliar application in spring from beginning of vegetation until 1-node-stage.		
Oilseed rape:	To improve winter hardyness, to provide manganese: 1-2 foliar applications with 2 l/ha fall from 3- to 6-leaf-stage.		
Sugar beet:	To provide manganese: 1-2 foliar applications with 2 l/ha between 6-leaf-stage and meeting across the rows.		
Potatoes:	To reduce susceptibility to scab: 1 I/ha with dressing. To provide manganese and improve skin quality: 1 - 2 foliar applications with 2 I/ha from beginning of meeting across the rows.		

Recommendations for use and application rates:

Technical details:

Density: 1,55 kg/l; pH < 2

Miscibility: PhytoGreen[®]-ManganeseNitrate cannot be mixed with phosphate, copper or sulphur containing products.

Pack sizes:

10 | • 20 | • 200 | • 1000 | More pack sizes upon request.

PhytoGreen[®]-Silicon Fertilisers

PK-FERTILISER LIQUID 5-13 with silico/ Plant adjuvant

Composition:

PhytoGreen®-Silicon: 7% SiO₂ (94 g/l water soluble silicon dioxide), 5% P_2O_5 (67 g/l water soluble phosphate), 13% K₂O (174 g/l water soluble potassium oxide) complexed with carboxylic acids; with 3% humic + fulvic acids

PhytoGreen®-Bio-Silicon: Suspension with plant available silicon made out of micronized vulcanic stone meal

Mode of action and advantages:

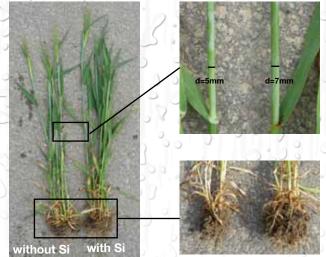
Silicon deposits within the cells and hardens the leaves

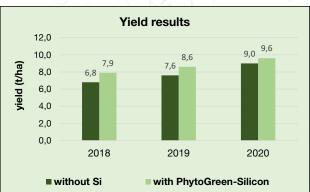
Recommendations for use and application rates:

- Enhance tolerance against abiotic stress situations (drought and heat), rises mechanical resistance to insect bites and fungus penetration
- For thicker, more stable stalks in cereals and high pod resistance in rapeseed

20 30 X	
Foliar application:	PhytoGreen [®] -Silicon/Bio-Silicon can be applied in all cultures, whereby foliar applica- tion guarantees highest efficacy. 1-3 treatments with 1 I PhytoGreen [®] -Bio-Silicon or 2 I PhytoGreen [®] -Silicon/ha from beginning of vegetation are recommended, winter cultures should receive the first treatment in autumn.
Soil application (with irrigation systems):	PhytoGreen [®] -Silicon/ Bio-Silicon can be used for all cultures. Several treatments with 5-10 l/ha from beginning of vegetation are recommended.

A list of some plant diseases that have had their intensities reduced by silicon application is summarized in the following table (according to Rodrigues, F. A. & Datnoff, L.D. (2015): Silicon and Plant diseases. Springer-Verlag):


Crop	Diseases	
Barley	Black point, Powdery mildew	
Bean	Anthracnose, Angular leaf spot	
Corn	Pythium root and Stalk rot, Corn smut	
Cucumber	Powdery mildew, Anthracnose, Leaf spot, Crown and Root rot, Grey mold rot, Black rot, Fusarium wilt	
Lettuce	Downy Mildew, Fusarium wilt	
Melon	Powdery mildew, Fusarium root rot, Alternaria	
Rice	Blast, Brown spot, Sheat blight, Leaf scald, Stem rot Root knod nematodes, Grain discoloration	
Rye	Powdery mildew	
Strawberries	Powdery mildew, Anthracnose	
Soybean	Rust, Phytophtora root rot, Stem cancer	
Tomato	Fusarium crown and root rot, Pythium root rot, Bacteria wilt	
Wheat	Powdery mildew; Septoria leaf and Spot blotch, Leaf blast, Eyespot, Bacterial leaf streak, Foot rot	


Technical details:

PhytoGreen®-Silicon: Density: 1,25 kg/l; pH = 12 **PhytoGreen®-Bio-Silicon:** Density: 1,3 kg/l; pH ca. 8

Pack sizes:

1 | • 10 | • 200 | • 1000 | More pack sizes upon request. Field trial results in winter barley 2018-2020

PhytoGreen[®]-MultimicroMix Carbo

MICRO-NUTRIENT MIXTURE LIQUID WITH SULPHUR AND MAGNESIUM

Composition:

0,3% B (Boron), 0,5% Cu (Copper), 1,5% Fe (Iron), 1,5% Mn (Manganese), 0,1% Mo (Molybdenum) 2,0% Zn (Zinc), 4,0% MgO (Magnesium oxide) and 6,4% S (Sulphur)

Mode of action and advantages:

- Directly plant available micro-nutrients, sulphur and magnesium formulated with carboxylic acids to prevent any lack situations
- Very well compatible, no phytotoxicity
- Improve growth and vitality of the culture as well as yield quality
- Lower pH in the application broth

Recommendations for use and application rates

All cultures:

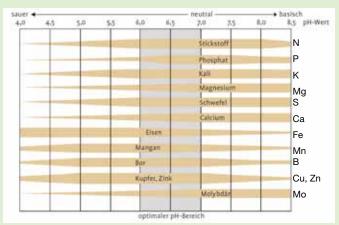
PhytoGreen[®]-MultimicroMix Carbo should be applied preventively against nutrients lack, or when early symptoms of them are observed. The treatment migth be repeated after 15-20 days if necessary.

Application rates:

Foliar application: 5 l/ha. Soil/ Root application: 4-8 l/ha

PhytoGreen[®]-MultimicroMix Carbo must be applied with enough water to reach a throughout coverage of the full leave area. It is recommended to apply this product at the beginning of the day or during night. Moreover, it can also be used via soil in fertigation, spraying, dripping, etc.. PhytoGreen[®]-MultimicroMix Carbo can be applied together with other products, although it is recommended to perform a miscibility test previously.

Technical details:


Density: 1,34 kg/l; pH = 2

Miscibility:

The product can be mixed with usual plant protection products and other foliar fertilisers.

Pack sizes:

1 I ● 10 I ● 200 I ● 1000 I More pack sizes upon request.

Availability of nutrients in the soil depending on pH of the soil. Lack of nutrients within the plants due to low availability from the soil can easily be prevented with foliar fertilisation, especially concerning micro nutrients.

(Source: Bundeministerium für die Land- und Forstwirtschaft, Umwelt und Wasserwirtschaft Wien (2006): Richtlinien für die sachgerechte Düngung, 6. Auflage)

PhytoGreen[®]-Boron Fertilisers

BORETHANOLAMINE and CALCIUMBORATE SUSPENSION

Composition:

PhytoGreen®-Boron: 11% B (150 g/l water soluble boron as Borethanolamine)

PhytoGreen®-Calciumborate: 7 % Boron (101 g B/l) , 12 % Calciumoxide (173 g CaO/l)

Mode of action and advantages:

- To provide boron as water soluble Boronethanolamine or as suspension in combination with Calcium
- Enhance growth of meristem, provide regular blossom-time and fruit setting
- Ensure the output

Recommendations for use and application rates:

General:	To provide boron: 1-3 l/ha as foliar application with 200-400 l water/ha or 4-8 l/ha as soil applic tion.		
Strawberries:	For flower quality, fruit setting and against deformed berries: one foliar application with 1 I/ha at green bud, 2 I/ha in autumn.		
Vine:	For flower quality, fruit setting, regular maturity and vine quality: two foliar applications with 0,5-1 l/ha from increasing of flower cluster until beginning of blossom.		
Hop:	For good shoot and blossom development: from enough foliage until beginning of blooming 3-5 applications with 0,1% (100 ml/ 100l water).		
Stone fruit:	For flower quality and fruit setting: 2 I/ha at beginning of blooming and 2 I/ha after harvest as foliar applications.		
Pip fruit: For flower quality, fruit setting and skin quality: three foliar applications with 1 l/ha from until petal fall, one foliar application with 2 l/ha after harvest.			
Maize:	For pollen quality and graining: 3 I/ha from 4- to 10-leaf-stage as foliar application.		
Green vegetables, brassica:	For inner quality, against heart necrosis: 2-3 l/ha as soon as enough leaves are developped as foliar application.		
Sugar beet:	Against heart and dry rot: one or two foliar applications with 3 I/ha from 4- to 6-leaf-stage until meeting across the rows.		
Fruiting vegetable, root crops:	ble, For fruit setting and fruit quality: 2-3 l/ha as soon as enough leaves are developped as foliar app cation.		
Potatoes:	For inner quality: one or two foliar applications with 1 I/ha from meeting across the rows.		
Oilseed rape:	For regular blossom-time and maturity, output: 3 l/ha in autumn from 4- to 6-leaf stage as foliar application. At high boron deficiency repeat treatment in spring.		
Winter cereal:	To provide boron especially under dry wheather: 1-2 applications with 0,5 l/ha (BBCH 30 - 37)		


Technical details:

PhytoGreen®-Boron: Density: 1,36 kg/l, pH = 7,9 **PhytoGreen®-Calciumborate:** Density: 1,44 kg/l; pH = 7,5

Miscibility: PhytoGreen[®]-Calciumborate cannot be mixed with posphates or sulfates. PhytoGreen[®]-Boron can be mixed with usual plant protection products.

PhytoGreen[®]-Boron is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

3.3.00

PhytoGreen[®]-Calcium Fertilisers

out of CALCIUM NITRATE or CALCIUM CARBONATE

Composition:

CARBO-ECO Ca:

6,0% CaO (69 g/l water soluble Calciumoxide = 49 g Ca/l)

PhytoGreen[®]-CalciumCarboxylate:

23,0% Seaweed extract (*Ascophyllum nodosum*)
13,5% CaO (182 g/l water soluble Calciumoxide = 130 g Ca/l)
8,0% N (108 g/l water soluble nitrogen)

Phytosol[®]: 27% CaO (400 g CaO/I) out of micronized calcium carbonate (CaCO₃) as suspension Mode of action and advantages:

- Directly plant available Calcium out of Calciumcarbonate (CARBO-ECO Ca, Phytosol[®]) or Calciumnitrate (PhytoGreen[®]-CalciumCarboxylate)
- With natural carboxylic acids for best nutrient uptake
- Enhance fruit quality
- Help to prevent bitter pit and pysiological storage diseases

Recommendations for use and application rates:

5. 3	PhytoGreen [®] -CalciumCarboxylate	CARBO-ECO Ca	Phytosol®
General:	To provide calcium: 2-4 l/ha applied on the leaves with a minimum of 500 l wa-ter/ha.	To provide calcium: 6-20 l/ha applied on the leaves with a minimum of 500 l water/ ha (2-5%)	2-4 I/ha in 200-400 I water/ha. 2-4 applications in intervals of 10-14 days are recommended.
Vine:	Several foliar applications with 4 l/ha as soon as flower cluster are visible until harvest.	Several foliar applications with 8 l/ha as soon as flower cluster are visible.	2 l/ha before blooming, 4 l/ha at the end of blooming and 2 further treatments with 4 l/ha every 14 days.
Pip fruit:	For fruit firmness and colouring, to pre- vent bitter pit and physiological storage diseases: several foliar applications with 4 l/ha from walnut size up every eight days.	For fruit firmness and colouring, to pre- vent bitter pit and physiological storage diseases: several foliar applications with 8 l/ha from walnut size up every eight days.	2 I/ha from 2-leaf-stage on and 3 fur- ther applications with 4 I/ha every 10-14 days.
Stone fruit:	2-3 foliar applications with 4 l/ha from beginning of blooming until harvest.	2-3 foliar applications with 8 l/ha from beginning of blooming until harvest.	
Strawberries:	3-4 times 4 l/ha from beginning of blossom.	3-4 times 8 l/ha from beginning of blossom.	3 l/ha at 10-15 cm plant heigth, second application of 4 l/ha after 14 days.
Vegetables:	To prevent inner necrosis and leaf-edge necrosis: several foliar applications with 2-4 l/ha as soon as foliage has develop- ped sufficiently.	To prevent inner necrosis and leaf-edge necrosis: 3 applications with 8 l/ha as soon as foliage has developped suffici- ently.	4 I/ha from 2-leaf-stage on and 1-2 fur- ther applications with 4 I/ha every 10-14 days.
Potatoes:	1-2 foliar applications with 4 l/ha from meeting across the rows.	1-2 foliar applications with 8 l/ha from meeting across the rows.	3 l/ha at 10-15 cm plant heigth, 2-3 further applications with 4 l/ha.
Sugar beet:	Zur Erhöhung der Lagerstabilität von Spätrüben bei letzter Fungizidspritzung 2 I/ha. Vorher bei Bedarf 1 I/ha zu den Fungizidmaßnahmen.	Zur Erhöhung der Lagerstabilität von Spätrüben bei letzter Fungizidspritzung 4 I/ha. Vorher bei Bedarf 2 I/ha zu den Fungizidmaßnahmen.	3 l/ha at 10-15 cm plant heigth, 2-3 further applications with 4 l/ha.
Ornamentals:	Several foliar applications with 2-4 l/ha every 10-14 days.	Several foliar applications with 4-8 l/ha every 10-14 days.	

Technical details:

CARBO-ECO Ca: Density 1,15 kg/l, pH= 5-7 **PhytoGreen[®]-CalciumCarboxylate:** Density: 1,35 kg/l; pH=6,1 **Phytosol[®]:** Density: 1,47 kg/l; pH = 9,3

CARBO-ECO Ca and Phytosol[®] are in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany.

Miscibility: The products can be mixed with usual plant protec- **nic agriculture in Germany.** tion products.

Pack sizes:

10 | • 20 | • 200 | • 1000 | More pack sizes upon request.

PhytoGreen®-Copper Fertilisers

COPPER OXYCHLORIDE SUSPENSION and COPPER FERTILISER LIQUIDS

Composition:

PhytoGreen[®]-Cu256: PhytoGreen[®]-CopperCarboxylate; CARBO-ECO Cu: 19,25% Cu (256 g copper/l) 5% water soluble copper (58 g/l Cu) formulated with carboxylic acids

Mode of action and advantages:

- To provide copper immediately
- Correct and prevent copper deficiency in any culture
- High concentrated suspension or water solble formulations with Carboxylates
- Quick uptake into the plant and metabolism
- Very plant-friendly

Recommendations for use and application rates:

0.02	PhytoGreen [®] -Cu256	PhytoGreen [®] -CopperCarboxylate/ CARBO-ECO Cu	
General: - 0,25 I/ha at low deficiency/ to prevent lack, - 0,5 I/ha at medium deficiency, - 0,75 I/ha at high deficiency as a foliar application in 200-400 I water/ha. Repeat treatment if necessary.		To provide copper: 2-4 l/ha as a foliar application in 200-400 l water/ha.	
Vine: To prevent and repair copper deficiency: several foliar applications with 0,25 - 0,75 l/ha from green sprout tops until closing of grapes.			
Cereals: To provide copper, for resistence against cold, resistance to lodging, output, corn quality: 1 foliar application with 0,25 - 0,75 l/ha from 3-leaf-stage until end of tillering, repeat treatment if necessary.		To provide copper, for resistence against cold, resistance to lodging, output, corn quality: 1 foliar application with 2-3 I/ha from 3-leaf-stage until end of tillering, repeat treatment if necessary.	
Corn: To provide copper: 0,25 l/ha from 6-leaf stage.		To provide copper: 2 l/ha from 6-leaf stage as foliar application.	
Cucumber:	0,25 - 0,75 l/ha in 200 - 400 l water/ha as foliar application.	To provide copper: 2 l/ha as foliar application from 4-leaf-stage, repeat treatment if necessary.	

Technical details:

PhytoGreen®-Cu256:Density 1,33 kg/l; pH = 7-9PhytoGreen®-CopperCarboxylate:Density 1,14 kg/l; pH = 2,4CARBO-ECO Cu:Density 1,16 kg/l; pH = 1,3

PhytoGreen[®]-Cu256 and CARBO-ECO Cu are in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

Miscibility: The products can be mixed with usual plant protection products.

Pack sizes:

1 | • 5 | • 10 | • 200 | More pack sizes upon request.

PhytoGreen®-Iron Fertilisers

IRON FERTILISER LIQUIDS (Carboxylates)

Composition:

PhytoGreen[®]-EisenCarboxylat: **CARBO-ECO Fe:**

5% water soluble iron (58,5 g/l Fe) formulated with carboxylic acids 5% water soluble iron (58,5 g/l Fe) formulated with carboxylic acids

Mode of action and advantages:

- Quick absorption and action in the plant
- Correct and prevent the lack of iron in any culture
- With natural carboxylic acids to enhance vitality
- Promote growth and yield quality

commendations for use and application rates 0 290 00

General:	To prevent and remedy iron-induced chlorosis: 2-5 l/ha as foliar application or 5-8 l/ha as soil application.		
Berry fruits:	1-2 foliar applications with 3-5 I/ha from beginning of vegetation until harvest.		
Stonefruit:	1-2 foliar applications with 3-5 l/ha from fruit setting until harvest.		
Pip fruit:	Leaf development, fruit setting, yield: 3-5 l/ha as foliar application during full flowering, finish flowering, post flowering and at hazelnut size. To achieve a plain shell, against greasiness, to prevent and remedy iron-induced chlorosis 1-2 times with 5 l/ha as of walnut size.		
Vine:	4 foliar applications with 3-5 I/ha after sprouting until the grapes have reach their full size.		
Arable farming:	Several foliar applications with 3-5 l/ha.		
Zierpflanzen:	4 foliar applications with 30-50 ml/100 m ² (3-5 l/ha).		
Mediterranean plants and citrus:	0.5-1.0% as foliar application.		

00

Iron deficiency symptoms on vine (left) and strawberries (right) as an example: yellow-greenish, later yellowwhite chlorosis with sharp green veins. Symptoms start on the youngest leaves.

Technical details:

PhytoGreen[®]-IronCarboxylate: Density: 1,17 kg/l; pH = 2,4 CARBO-ECO Fe: Density: 1,17 kg/l; pH = 1,2

CARBO-ECO Fe is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

Miscibility:

The products can be mixed with usual plant protection products.

Pack sizes:

10 ltr. · 200 ltr. · 1000 ltr.

PhytoGreen®-Potassium Fertilisers

NK-FERTILISER LIQUID / POTASSIUM-FERTILISER LIQUID

Composition:

 PhytoGreen®-PotassiumCarboxylate:
 33% K₂O (502 g/l water soluble potassium)

 3% N (45 g/l total nitrogen) formulated with carboxylic acids

 CARBO-ECO K:
 20% K₂O (264 g/l water soluble potassium)

 formulated with carboxylic acids

Mode of action and advantages:

- To supply potassium immediately
- Correct and prevent the lack of potassium in any culture
- Formulation with water soluble carboxylic acids guarantees quick uptake and metabolism
- Highly compatible

Recommendations for use and application rates:

0 0	PhytoGreen [®] -PotassiumCarboxylate	CARBO-ECO K
General:	Foliar application: 150-500 ml/100 l water. Soil application: 10-20 l/ha or 1% (1 l with 100 l water) in fertigation.	Foliar application: 200-400 ml/100 I water. Soil application: 10-20 I/ha or 1% (1 I with 100 I water) in fertigation.
Pip fruit:	For fruit colouring, to provide potassium: 2-5 foliar applications with 4 I/ha from June.	For fruit colouring, to provide potassium: 2-4 foliar applications with 4 I/ha from June.
Vine:	Several foliar application with 4-5 l/ha as soon as enough leaves are developed.	Several foliar application with 4 l/ha as soon as en- ough leaves are developed.
Table grapes:		To provide potassium, for higher sugar contents: 1 foliar application with 4-5 l/ha as soon as berries start getting smooth.
Vegetables:		To provide potassium: several foliar applications with 3-4 I/ha as soon as enough leaves are developed.
Cereal:	Two foliar applications with 3-5 l/ha.	Two foliar applications with 3-4 l/ha.
Corn:	5 l/ha as foliar application (with fungicides)	4 l/ha as foliar application (with fungicides)
Potatoes:		To provide potassium, to prevent blue/ black spots: 3 foliar applications with 4-7 l/ha during bulb forma- tion.

Technical details:

PhytoGreen®-PotassiumCarboxylate:Density: 1,52 kg/l; pH=12,9CARBO-ECO K:Density: 1,32 kg/l; pH=7,0

CARBO-ECO K is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

Miscibility:

The products can be mixed with usual plant protection products.

Pack sizes: 10 | • 20 | • 200 | • 1000 |

More pack sizes upon request.

PhytoGreen®-Manganese Fertilisers

OUT OF MANGANESECARBONATE OR -SULFATE

Composition:

PhytoGreen[®]-Mn27: PhytoGreen[®]-ManganeseCarboxylate and CARBO-ECO Mn: PhytoGreen[®]-Manganese150:

27% Mn (500 g/I Manganese out of MnCO₃)

5% water soluble Manganese (58 g/l Mn) formulated with carboxylic acids

10,9% water soluble Manganese (150 g/l Mn) our of MnSO,

Mode of action and advantages:

- Provide manganese immediately
- Correct and prevent the lack of manganese in any culture
- Formulated as high concentrated suspension or as water soluble carboxylates
- Improve quality, vitality and output

Recommendations for use and ap D. Reno OJ

5 6	PhytoGreen [®] -Mn27	PhytoGreen [®] -ManganCarboxylat/ CARBO-ECO Mn	PhytoGreen [®] - Mangan150	
General:	eneral: To provide manganese: 0,5-2 l/ha or 0,2-1,0% as foliar application. To provide manganese: 2-5 l/ha as foliar appli- cation or 5-8 l/ha via the soil.		Marginal Deficiency: 2.0 l/ha in at least	
Strawberries:	To provide manganese, for vitality and output: 1-2 ap- plications with 1 I/ha from beginning of flowering until harvest.	1-2 foliar applications with 2 l/ha from begin- ning of flowering until harvest.	200 litres of water.	
Pip fruit:	For leaf quality, to provide manganese: several applica- tions with 0,5-1 l/ha from hazelnut size up. To achieve a green back-ground colour: 3 applications with 0,5 l/ha from walnut size up.	To provide manganese: several foliar applica- tions with 2-3 I/ha from hazelnut size up. To achieve a green back-ground colour: 3 foliar applications with 2 I/ha from walnut size up.	Moderate deficiency: 4.0 l/ha in at least 200 litres of water.	
Stonefruit:	For leaf quality: 1 I/ha from fruit setting up.	2-3 l/ha as foliar application from fruit setting.	Severe deficiency: 4.0 l	
Vine:	To optimize photosynthesis: 2 - 3 applications with 1 l/ ha as soon as flower clusters are visible.	2 - 3 foliar applications with 2-3 l/ha as soon as flower clusters are visible.	ha in at least 200 litres of water and repeat	
Vegetables:	getables: For leaf quality and resistance: 1-2 applications with 1 1-2 foliar applications with 1 1-2 foliar applications with 1 enough leaves are developed.		as necessary during the growing season.	
Potatoes:	To reduce the susceptibility to scab: 0,5 l/ha with dres- sing. For skin quality and output: 1-2 applications with 1 l/ha from 1 week after beginning of vegetation.	1-2 foliar applications with 2-3 l/ha from 1 week after beginning of vegetation up.	0° 0°	
Cereals:	For resistance to cold and lodging, for output: 1-2 appli- cations with 0,5-1 I/ha from 2-leaf-stage on.	For resistance to cold and lodging, for output: 1 foliar applications in autumn with 2-3 l/ha from 2-leaf-stage.	3. 7.	
Sugar beet:	For resistance and output: 1-2 applications with 1 l/ha from 4-leaf-stage on.	2-3 foliar applications with 2 l/ha from 4-leaf-stage.		
Oilseed rape:	For resistance and output: 1-2 applications with 0,5-1 l/ ha from 8-leaf-stage on.	For resistance and output: 1-2 foliar applica- tions with 2-3 I/ha from 8-leaf-stage.) 3 3	

Technical details:

PhytoGreen[®]-Mn27: PhytoGreen[®]-ManganCarboxylat: Density: 1,18 kg/l; pH = 6,6 CARBO-ECO Mn: PhytoGreen[®]-Mangan150:

Density: 1,81 kg/l; pH = 8,4

PhytoGreen®-Mn27 and CARBO-ECO Mn are in compliance with Council Regulation (EC) No Density: 1,16 kg/l; pH = 1,76 2018/848 on organic farming. Listed at FiBL Density: 1,37 kg/l; pH = 4-7 Inputs list for the organic agriculture in Germany and at InfoXgen.

Miscibility:

The products can be mixed with usual plant protection products.

Pack sizes: 1 | • 5 | • 10 | • 200 | • 1000 |

PhytoGreen[®]-Magnesium Fertilisers

OUT OF MAGNESIUMHYDROXIDE; MAGNESIUMNITRATE OR -SULFATE

Composition:

PhytoGreen[®]-Mg500: 500 g/l Magnesiumoxide (34% MgO) PhytoGreen®-MagnesiumCarboxylate: 5% water soluble Magnesiumoxide (59 g/l MgO) with carboxylic acids CARBO-ECO Mg: 5% water soluble Magnesiumoxide (59 g/I MgO) with carboxylic acids 10% water soluble sulphur trioxide (equivalent 48 g S/l)

Mode of action and advantages:

- Correct and prevent Magnesium deficiency in every culture
- High concentrated suspension or water soluble carboxylates
- Quick absorption and direct plant availability
- To prevent Botrytis or stem necrosis in vine, for high quality grapes

commendations for use and ap J. Rano

0	PhytoGreen [®] -Mg500	PhytoGreen [®] -MagnesiumCarboxylat	CARBO-ECO Mg
General:	Foliar fertiliser to provide magnesium: 3-4 l/	Leaf fertiliser to provide magnesium: 2-4 l/	Leaf fertiliser to provide magnesium: 2-5 l/
	ha, concentration: 0.5-1% (foliar).	ha, concentration: 0.2-0.4% (foliar).	ha, concentration: 0.2-0.5% (foliar).
Pip fruit	Several foliar applications with 4 l/ha from	Several foliar applications with 4 l/ha from	Several foliar applications with 5 l/ha from
	finish flowering (in case of varieties suscep-	finish flowering (in case of varieties suscep-	finish flowering (in case of varieties suscep-
	tible to russeting apply only when the fruit	tible to russeting apply only when the fruit	tible to russeting apply only when the fruit
	has grown to the size of a walnut).	has grown to the size of a walnut).	has grown to the size of a walnut).
Strawber- ries:	Yield, vitality, magnesium supply: 2-3 times 4 l/ha from start of blooming period until harvest.	Yield, vitality, magnesium supply: 2-3 foliar applications with 4 l/ha from start of bloo- ming period until harvest.	Yield, vitality, magnesium supply: 2-3 foliar applications with 5 l/ha from start of bloo- ming period until harvest.
Vine:	To prevent lack of magnesium and stem	To prevent lack of magnesium and stem	To prevent lack of magnesium and stem
	necrosis, leaf quality: several applications	necrosis, leaf quality: several foliar appli-	necrosis, leaf quality: several foliar appli-
	with 3-4 I/ha when inflorescences are visible	cations with 4 I/ha when inflorescences are	cations with 5 l/ha when inflorescences are
	until one month before vintage.	visible until one month before vintage.	visible until one month before vintage.
Stonefruit:	To avoid early falling of leaves, to supply magnesium: 2-3 times 4 l/ha from start of blooming period until harvest.	To avoid early falling of leaves, to supply magnesium: 2-3 foliar applications with 4 l/ ha from start of blooming until harvest.	To avoid early falling of leaves, to supply magnesium: 2-3 foliar applications with 5 l/ ha from start of blooming until harvest.
Vegetables:	To support leaf quality, leaf colour, pho-	To support leaf quality, leaf colour, photo-	To support leaf quality, leaf colour, photo-
	tosynthesis, to supply magnesium: 1-2	synthesis, to supply magnesium: 1-2 foliar	synthesis, to supply magnesium: 1-2 foliar
	times 4 l/ha as soon as leaves have grown	applications with 4 l/ha as soon as leaves	applications with 5 l/ha as soon as leaves
	sufficiently.	have grown sufficiently.	have grown sufficiently.
Potatoes:	To prevent early leaf dying, to gain a better yield, to supply with magnesium: 1-2 times 4 l/ha from closing of rows.	To prevent early leaf dying, to gain a better yield, to supply with magnesium: 1-2 foliar applications with 4 l/ha from closing of rows.	To prevent early leaf dying, to gain a better yield, to supply with magnesium: 1-2 foliar applications with 5 I/ha from closing of rows.
Ornamental plants:	To support leaf quality, leaf colour, photo-	To support leaf quality, leaf colour, photo-	To support leaf quality, leaf colour, photo-
	synthesis, to supply with magnesium: 1-2	synthesis, to supply with magnesium: 1-2	synthesis, to supply with magnesium: 1-2
	foliar applications with 4 l/ha as soon as	foliar applications with 4 l/ha as soon as	foliar applications with 5 l/ha as soon as
	leaves have developed sufficiently.	leaves have developed sufficiently.	leaves have developed sufficiently.

Technical details:

PhytoGreen[®]-Mg500: PhytoGreen[®]-MagnesiumCarboxylat: Density: 1,18 kg/l; pH = 2,0 CARBO-ECO Mg:

Density: 1,44 kg/l; pH = 10 Density: 1,19 kg/l; pH = 1,5 **CARBO-ECO Mg is in compliance with** Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany.

Miscibility:

The products can be mixed with usual plant protection products.

Pack sizes: 10 | • 20 | • 200 | • 1000 |

PhytoGreen®-Molybdenum

STRAIGHT INORGANIC MICRONUTRIENT FERTILISER IN SOLUTION

Composition:

15,6 % Mo (215 g/l water soluble Molybdenum)

Mode of action and advantages:

- Quick absorption and direct availability
- Provides Molybdenum for the youngest leaves especially
- The ultimate supplement to soil fertilisation if availability is low (on light and acidic soils, during drought etc.)

Recommendations for use and application rates:

General:	To prevent molybdenum: 0,25 l/ha as foliar application with at least 200 l water/ha.	
Oilseed rape:	To provide molybdenum, against "whiptail" symptoms: 1-2 foliar appli- cations with 0,15-0,25 l/ha from beginning of shooting.	
Cereal	To provide Molybdenum, for high yield quality: 1 foliar application with 0,15-0,25 l/ha when first awns visible (in awned forms only) / BBCH 49.	
Crucifers, leaf vegetables, bulbous vegetables:	To provide molybdenum, against "whiptail" symptoms, against defor- med leaves (shape of hook): 1-2 foliar applications with 0,25 l/ha as soon as enough leaves are developed.	
Sugar beet:	To provide molybdenum, against "whiptail" symptoms: 1-2 foliar appli- cations with 0,15-0,25 I/ha between 6-leaf-stage and meeting across the rows.	
Grassland:	Improvement of the nodule formation of legumes: in spring from the beginning of vegetation 1-2 times 0.25 l/ha.	

Technical details:

Density: 1,37 kg/l

Miscibility:

PhytoGreen[®]-Molybdenum can be mixed with usual plant protection products.

Pack sizes:

1 | • 5 | More pack sizes upon request. PhytoGreen[®]-Molybdenum is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

PhytoGreen[®]-Sulphur800

SULPHUR FERTILISER-SUSPENSION, MICRONIZED

Composition:

56 % sulphur (800 g S/I) based on micronized elemental sulphur

Mode of action and advantages:

- Liquid formulation for direct sulphur supply via the leaves
- For yield and quality sulphur is used to build amino acids, proteins, enzymes and vitamins.
- raises oil content and feeding qualities

Recommendations for use and application rates:

General:	To prevent and repair sulphur deficiency: several applications with 2-10 l/ha as a foliar application with at least 300 l water/ha. In case of application together with other products, do not exceed the amount of 1 l PhytoGreen [®] -Sulphur800 per 50 l of water.
Raps:	To provide sulphur and to support N-assimilation; for high oil contents: 1-2 applications with 5 l/ha from 6-leaf stage until beginning of blossom.
Cereal: To provide sulphur and to support N-assimilation; to reduce susceptibility to mildew: 1-2 applicativity with 3 l/ha from beginning of tillering.	
Hop:	To prevent and repair sulphur deficiency: several applications with 0,2-0,4% as needed.
Vine:	Maximum 8 applications: 3 - 4 I/ha from green sprout tops (BBCH09), 4 I/ha at blossom (BBCH61) and after blossom (BBCH71), further applications until one month before vintage. Water amount: 200 - 1000 I/ha.

Technical details:

Density: 1,42 kg/l, pH = 8

Miscibility: PhytoGreen[®]-Sulphur can be mixed with usual plant protection products.

PhytoGreen[®]-Sulphur800 is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

PhytoGreen®-Zinc Fertilisers

OUT OF ZINC OXIDE AND ZINC SULFATE

Producto BIO Stealthy Pro

Composition:

PhytoGreen[®]-Zinc40:

PhytoGreen[®]-ZincCarboxylate and CARBO-ECO Zn:

40 % zinc (700 g/l Zn)

5% water soluble Zinc (58 g/l Zn) formulated with carboxylic acids

Mode of action and advantages:

- Supply zinc (zinc bioavailability is low at high phosphor level/ in cold and wet, humus-rich soils / in soils with high pH value)
- Formulated as high concentrated suspension or as water soluble carboxylates
- Quick absorption and direct availability

Recommendations for use and application rates:

20 02

1. 30	PhytoGreen [®] -Zn40	PhytoGreen [®] -ZinkCarboxylat/CARBO-ECO Zn
General:	For zinc supply: 1-2 l/ha as a foliar application in at least 200 litres of water.	For zinc supply: 2-4 I/ha as a foliar application in at least 200 I of water or 5-8 I/ha via the soil.
Strawberries:	For bud formation and cold hardiness: 1 I/ha in fall.	For flower bud growth, for cold hardiness: 3-4 l/ha as foliar application in fall.
Stone fruit:	Rosettes leaf quality: 2 - 3 x 0.25 l/ha after blossom. For initial development, emergence: 1 l/ha after har- vest as foliar application.	For initial development: 3-4 l/ha as a foliar application after harvest.
Pomaceous fruit:	For initial development, emergence and leaf quality: 1-2 times 1 l/ha from the stadium Red Bud until fruit fall and/or after harvest as foliar application.	For initial development, emergence and leaf quality: 1-2 foliar applications with 3-4 l/ha at the stadium Red Bud and/or after havest.
Vine:	For flowering, fruit set, uniform ripening, wine quality: 1 l/ha as foliar application when inflorescences are increasing.	For flowering, fruit set, uniform ripening, wine quality: 3-4 I/ha as foliar application when inflorescences are increasing.
Mediterranean and citrus plants:	Foliar application with 0,25%.	Foliar application with 0,25 - 0,5%.
Cereals:	For increased yield and grain quality: 1 l/ha as a foliar application from 2-leaf stage.	For increased yield and grain quality: 2 I/ha as foliar application from 2-leaf stage.
Corn:	For corncob filling: 1-2 times 1 l/ha as a foliar applica- tion from 4-leaf stage.	For corncob filling: 1-2 foliar applications with 2-3 l/ ha from 4-leaf stage.
Vegetables:	For leaf quality, initial development: 0.5-1 l/ha as foli- ar application as soon as leaves are developed.	For leaf quality and initial development: 2-4 I/ha as foliar application from vegetation height of 15 cm.
Ornamentals:	For leaf quality and growth: in the greenhouse 4 applications with 60-80 ml/100 m ² (1-2 l/ha).	For leaf quality and growth: 0.25-0,5 % as foliar application.
Нор:	For bud and sprout growth and quality: 3 foliar applications with 0.03-0.05 % before flowering.	For bud and sprout growth and quality: 3 foliar appli- cations with 0.05 % at a height of 1 m.

Technical details:

 PhytoGreen[®]-Zn40:
 Density: 1,71 kg/l; pH = 9

 PhytoGreen[®]-ZinkCarboxylate:
 Density: 1,16 kg/l; pH = 5,5

 CARBO-ECO Zn:
 Density: 1,17 kg/l; pH = 1,49

PhytoGreen®-Zn40 and CARBO-ECO Zn are in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

Miscibility:

The products can be mixed with usual plant protection products.

Pack sizes: 1 | • 5 | • 10 | • 200 | • 1000 |

PhytoGreen®-SeedStarter

ORGANIC-MINERAL NK-FERTILISER with trace elements

Mode of action and advantages:

- For optimized initial supply of seeds with nutrients
- Special compositions depending on nutrient demands of each culture

- Improve uniform germination and promote root growth
- For quick and healthy youth development
- Enhances winter hardiness

Composition:

1 10-	05	·	$\sum_{i=1}^{n} \langle i \rangle_{i}$		100	0	P	2
	-	Green [®] - IStarter	PhytoG Potatoe		-	Green [®] - eStarter		Green [®] - Starter
Nitrogen (N)	2,0%	(27 g/l)	1,0%	(15 g/l)	1,5%	(20 g/l)	1,0%	(16 g/l)
Phosphate (P ₂ O ₅)	0,1%	(1,3 g/l)	0,08%	(1 g/l)	0,1%	(1 g/l)	0,1%	(1,5 g/l)
Potassium (K ₂ O)	2,5%	(32 g/l)	1,0%	(15 g/l)	2,3%	(30 g/l)	2,0%	(32 g/l)
Calcium (Ca)					0,3%	(4 g/l)	1,6%	(28 g/l)
Magnesium (Mg)			1,0%	(13 g/l)	0,2%	(2 g/l)	1,0%	(16 g/l)
Sulphur (S)	0,2%	(2,7 g/l)	1,8%	(23 g/l)	0,7%	(9 g/l)	2,0%	(32 g/l)
Boron (B)	0,2%	(2,5 g/l)	0,4%	(5,5 g/l)	1,5%	(20 g/l)	0,2%	(3 g/l)
Iron (Fe)					0,01%	(0,15 g/l)		
Copper (Cu)	0,6%	(7 g/l)	1,2%	(17 g/l)	0,5%	(7 g/l)	1,2%	(20 g/l)
Manganese (Mn)	4,4%	(56 g/l)	3,0%	(40 g/l)	4,0%	(52 g/l)	12%	(200 g/l)
Molybdenum (Mo)	0,1%	(1,2 g/l)	0,3%	(4,7 g/l)	0,1%	(0,8 g/l)	0,3%	(5 g/l)
Zinc (Zn)	1,6%	(20 g/l)	3,0%	(40 g/l)	3,1%	(40 g/l)	6,0%	(100 g/l)
Seaweed	2	ves	ye	es	У	es		/es
Humic acids		-	ye	es		-		-
Density (kg/l)	-	1,3	1,2	25	1	,3		1,6

Recommendations for use and application rates:

General:	PhytoGreen [®] -SeedStarter are sprayed evenly on the seeds and can be applied together with chemical seed treatment.
Cereal:	200 ml / 100 kg seeds (2 l / 1 tonne of seeds)
Potatoes:	200 ml/t seed potatoes to be applied on the seed pota- toes before planting (500 ml/ha with 2,5 t potatoes/ha)
Legumes:	200 ml / 100 kg seeds (220 ml/ha with 110 kg soya seeds/ha)
Corn:	100 ml / 100 kg seeds (app. 30 ml/ha with 100.000 seeds or 30 kg seeds/ha)

chemical treatment (Celest)+ PhytoGreen®-CerealStarter

In compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany and at InfoXgen.

Pack sizes: 5 | • 10 | • 200 |

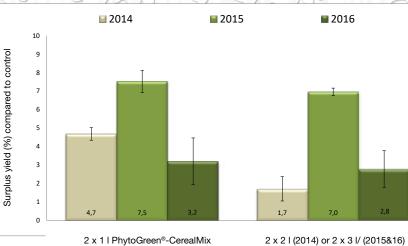
PhytoGreen®-CerealMixes

STRAIGHT LIQUID INORGANIC MACRONUTRIENT FERTILISER IN SOLUTION WITH MICRONUTRIENTS

Composition:

PhytoGreen[®]-CerealMix: 10,7% Mn (166 g/l manganese), 4,5% Zn (70 g/l zinc), 1,5 % Cu (23 g/l copper), 12,7% MgO (197 g/l magnesium oxide), 1,8% N (28 g/l carbamide N)

PhytoGreen[®]-CerealMixCarbo: 1,4% N (17 g/l nitrogen), 2,0 % MgO (25 g/l magnesium oxide), 1,0% Cu (12 g/l copper), 3,0% Mn (38 g/l manganese), 2,0% Zn (25 g/l zinc)


Mode of action and advantages:

- Optimized nutrient mixtures for cereals
- Highly concentrated as suspension or water soluble as Carboxylate
- Enhances winter hardiness, yield quality and protein content

Recommendations for use and application rates:

5.5302	PhytoGreen [®] -CerealMix	PhytoGreen [®] -CerealMixCarbo
	1-1,5 l/ ha from the beginning of vegetation in spring to 1-knot	2-4 l/ha from the beginning of vegetation and 2-4 l/ha be-
	stage, and 1-2 l/ha before the end the tillering.	fore the end the tillering.

Trial results winter wheat:

2 x 2 l (2014) or 2 x 3 l/ (2015&16) PhytoGreen®-CerealMixCarbo

	0	2 0	0
0 0	2014	2015 🔾	2016
2.2.			10.10.15
Sowing date:	25.09.13	25.09.14	13.10.15
Variety:	Opal	Akteur	RGT Re- form
Yield:	08.08.14	15.8.15	11.8.2016
Fertilisation/ plant protec- tion	co Co	mmon practi	ce
Culture before:	Winter rape seed		
Application:	BBC	H 31 & BBC	H 37

Technical details:

PhytoGreen®-CerealMix:Density: 1,58 kg/l, pH = 10PhytoGreen®-CerealMix Carbo:Density: 1,16 kg/l; pH = 5,5

Miscibility:

The products can be mixed with usual plant protection products.

Pack sizes:

1 | • 5 | • 10 | • 200 |

PhytoGreen®-CornMixes

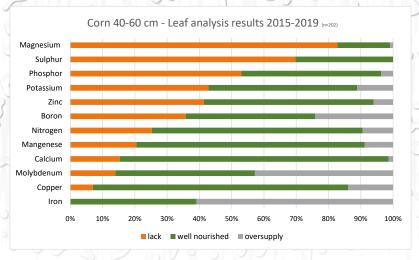
MICRO NUTRIENT MIXTURES

Composition:

 PhytoGreen®-CornMix:
 11% Mn (170 g Manganese/l), 6% Zn (93 g Zinc/l), 5% B (77 g Boron/l)

 PhytoGreen®-CornMix Carbo:
 4,0% Mn (50 g Manganese/l), 2,0% Zn (25 g Zinc/l), 1,0% Cu (12 g Copper/l),

 0,3% B (4 g Boron/l), 0,1% Mo (1 g Molybdenum/l)


Mode of action and advantages:

- Optimized nutrient mixtures for corn
- Highly concentrated as suspension or water soluble as Carboxylate
- Enhances quick youth development and yield quality

Recommendations for use and application rates:

2 2 2 2	PhytoGreen [®] -CornMix	PhytoGreen [®] -CornMixCarbo
Corn:		One foliar application with 4-6 l/ha or two foliar applications with 3 l/ha between 4- and 10-leaf-stage.

Results of leaf analysis

The figure on the left shows the leaf analysis results of maize (height of 40-60 cm) of the Institute for Agricultural and Environmental Analysis from the last few years. Leaf analyzes enable a precise assessment of the nutritional status of crops.

Macronutrients can be applied as foliar fertilizers in addition to the supply via the soil in order to bridge short-term deficits. The micronutrients zinc, boron and manganese, which are most frequently missing, are contained in the maize mixes and can fully be provided via foliar fertilisation.

Technical details:

PhytoGreen®-CornMix:Density: 1,50 kg/l; pH = 8PhytoGreen®-CornMix Carbo:Density: 1,24 kg/l; pH = 2,7

Miscibility:

The products can be mixed with usual plant protection products.

Pack sizes: 10 ltr. · 200 ltr. · 1000 ltr. Raw materials for PhytoGreen®-CornMix are in compliance with Council Regulation (EC) No 2018/848 on organic farming.

PhytoGreen®-FruitColour

PK-FERTILISER-LIQUID

Composition:

5% P_2O_5 (67,5 g/l water soluble phosphorpentoxide), **20%** K_2O (270 g/l water soluble potassium oxide) complexed by low molucular weight carboxylic acids, pH-neutral

Mode of action and advantages:

- Induces fruit colour change (anthocyanins synthesis)
- Enhances fruit quality (°Brix, sugar)
- P for healthy, well nourished and flavourful fruits
- pH-neutral and not aggressive to plants

PhytoGreen[®]-FruitColour is formulated with phosphorous and potassium complexed by low molecular weight carboxylic acids, which have the distinction of being highly reactive and extremely useful to link any molecule to be introduced into the plant and to be transported internally quickly and efficiently. It is especially useful during ripening and fruit fattening, enhancing at the same time fruit quality (°Brix, sugar), anthocyanins synthesis (colour) and polyphenols polymerization (skin maturing). But its use is highly recommendable in any crop stage that requires the specified P-K balance. Free of chlorides, nitrates and sulfates.

Recommendations for use:

Application rate: PhytoGreen[®]-FruitColour has to be applied as leaf fertiliser with 2-3 I/ha with enough water to ensure a throughout coverage of the complete leaf area.

Pome and pip fruit; grapes, vegetables: 2 applications 15 and 7 days before harvest. For pome and pip fruits repeart application directly after the first harvest.

Strawberries: 2 applications 8 and 4 days before beginning of harvest and 1 applications after first harvest.

Technical details:

Density: 1,35 kg/l, pH = 6,5

Miscibility:

PhytoGreen[®]-FruitColour can be mixed with usual plant protection products.

Pack sizes: 1 ltr. • 10 ltr. • 200 ltr. • 1000 ltr.

PhytoGreen[®]-FruitCombi

Straight liquid inorganic macronutrient fertiliser in solution N (Ca-Mg) 10 (10-1) with micronutrients

Composition:

10,0% N (150 g total nitrogen/l equivalent to 140 g/l Nitrate-N + 10 g/l Ammonium-N)
10,0% Ca (150 g/l water soluble Calcium)
1,1% Mg (17 g/l water soluble Magnesium), 0,05% B (700 mg water soluble Boron/l),

0,50% Mn (7,6 g water soluble Manganese/l), 0,02% Zn (300 mg water soluble Zinc/l)

Mode of action and advantages:

- Special formulation for fruit growing
- Improves fruit quality
- Supplies calcium, magnesium, boron, manganese and zinc

19, 5 ×	52	\bigcirc	222	Jor	53	
Recomme	ndations	for ι	use and	applica	ation	rates:

	5 2702 00	As soon as leaf area is sufficient, apply 2-5 l/ha as foliar application. After blooming until harvest foliar applications every 10-14 days with 5-10 l/ha.
1000	Berries:	Several foliar applications with 2-6 l/ha from fruit blooming until har- vest in at least 500 l water/ha.
	Field vegetables and potatoes:	As soon as leaf area is sufficient, apply 2,5-5 l/ha every 10-14 days in at least 200 l water/ha.

Technical details:

Density: 1,5 kg/l, pH = 2,1

Miscibility: PhytoGreen[®]-FruitCombi can be mixed with usual plant protection products. However, since it is not possible to foresee all instances that may occur in practice it is in any case recommended to perform a trial first mixing the products intended to be used.

Pack sizes:

1 | • 10 | • 200 | • 1000 |

PhytoGreen®-PotatoMix

MICRO NUTRIENT MIXTURE

Composition:

17,6% Mn (300 g Manganese/l), **3,5% Zn** (60 g Zinc/l), **5,8% Cu** (100 g Copper/l), **2,6% MgO** (45 g Magnesiumoxide/l)

- high concentrated micro nutrient mixture (micronised supension)
- for foliar application to support plant health
- very good miscibility with plant protection products
- Optimized nutrient mixture for potatoes

Recommendations for use and application rates:

Foliar fertiliser to supply nutrients.

Application rate:

Potato: 2-3 applications as soon as foliage has developped sufficiently with 2 l/ha every 8-14 days.

Other arable crops: 0,5-1 l/ha from 4-leavestage on. If necessary, repeat treatment in intervals of 10-14 days.

Application:

Application with 200-400 I water/ha each. To avoid clogging, nozzles should have a mesh size of at least 0.3 mm and the nozzle filters a maximum of 50 mesh. After application, immediately rinse out all lines and containers thoroughly with plenty of water.

Technical details:

Density: 1,7 kg/l; pH = 8-11

Miscibility: PhytoGreen[®]-PotatoMix can be mixed with usual plant protection products.

Pack sizes: 10 ltr. · 200 ltr. · 1000 ltr.

PhytoGreen®-RapeseedMixes

COMPOUND LIQUID INORGANIC MACRONUTRIENT FERTILISER IN SOLUTION OR IN SUSPENSION WITH MICRONUTRIENTS

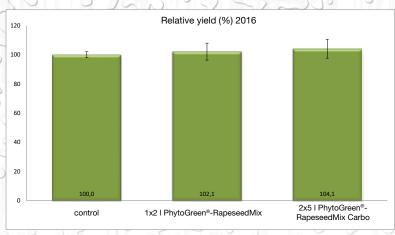
Composition:

 PhytoGreen®-RapeseedMix:
 4,8% Mn (74 g Mangan/l), 4,1% B (63 g Bor/l), 0,5% Mo (8 g Molybdän/l),
 9,0% CaO (139 g Calciumoxid/l), 9,2% S (142 g Schwefel/l)

PhytoGreen®-RapeseedMix Carbo: 2,0% Mn (22 g Mangan/l), 0,5% B (6 g Bor/l), 0,13% Mo (1 g Molybdän/l) 2,0% MgO (22 g Magnesiumoxid/l), 2,8% S (32 g Schwefel/l)

Mode of action and advantages:

- Optimized nutrient mixtures for rape (Brassica napus)
- Enhance winter hardiness
- For uniform blooming and ripening
- Highly concentrated as suspension or water soluble as Carboxylate


Recommendations for use and application rates:

)

	3. 25		PhytoGreen [®] -RapeseedMix	PhytoGreen [®] -RapeseedMix Carbo
			One foliar application in autumn	One foliar application in autumn with 5-7 l/ha
R	apeseed:	20	with 2-3 l/ha from 4-leaf-stage on	from 4-leaf-stage on and/ or one foliar appli-
39	Carlo 'y	20	and/ or one foliar application with	cation with 5-7 l/ha before blooming.
0-	Ma .	1000	2-3 l/ha before blooming.	

Frial results:

00

One year field trial with 4 replications:

Sowing date:	27.8.2015
Variety	KWS Gordon
Yield:	24.07.16
Fertilisation/plant protection	common practice
Culture before:	Winter wheat
Application:	BBCH 35 / BBCH 51

Technical details:

PhytoGreen®-RapeseedMix: Density: 1,50 kg/l; pH = 9 **PhytoGreen®-RapeseedMix Carbo:** Density: 1,15 kg/l; pH = 5

Raw materials for PhytoGreen[®]-RapeseedMix are in compliance with Council Regulation (EC) No 2018/848 on organic farming.

Miscibility: PhytoGreen[®]-RapeseedMixes can be mixed with usual plant protection products.

Pack sizes:

10 ltr. · 200 ltr. · 1000 ltr.

PhytoGreen®-CitrusMix

STRAIGTH LIQUID INORGANIC MACRONUTRIENT FERTILISER IN SOLUTION WITH MICRONUTRIENTS

Composition:

5,5% Zn (70g zinc/l out of zinc oxide)
4,6% Mn (60g manganese/l out of Mn-carbonate)
1,6% B (20g boron/l out of borethanolamine)
0,8% Mo (10g molybdenum/l out of Na-molybdate)
4,7 % N (60 g ureic nitrogen/l)

Mode of action and advantages:

A suspension concentrate formulation for foliar application to Citrus crops.

PhytoGreen[®]-CitrusMix contains a carefully balanced blend of manganese, zinc, boron and molybdenum with ureic nitrogen, specifically formulated to meet the nutrient needs of citrus during the different growth stages.

Recommendations for use and application rates:

Apply as a foliar spray 2.5 – 3.5 liters/ha in at least 200 liters/ha water depending on the degree of deficiency. The 1st application starts on spring shoots before flowering. Apply as early in the growing season as possible providing there is adequate leaf cover. Repeat the application on summer and autumn shoots with the same dosage rate.

Avoid spraying during very strong sunlight, in temperatures above 25°C or when the crop is suffering from drought stress. Apply on dry leaves and at least two hours before irrigation or rain.

Technical details:

Density: 1,3, pH = 8

Miscibility: PhytoGreen[®]-CitrusMix can be mixed with usual plant protection products.

Pack sizes: 10 | • 200 | • 1000 | Shake the container well before opening and use. Half fill the sprayer tank with clean water. Begin agitation and add the required quantity of Citrus Mix. Add the rest of the water and apply without delay. Maintain agitation while travelling and during the spraying operation.

PhytoGreen[®]-CropCover1000

Wetting agent/ adhesion promoter BVL-No. 6761-64

Mode of action and advantages:

Adjuvant based on natural raw materials to enhance efficacy and compatibility of plant protection products and leaf fertilisers.

The active ingredient of the product and its effects:

Plant derived starch (Amylum)

PhytoGreen[®]-CropCover1000 reduces the surface tension of water and distributes the sprayed liquid uniformly across the leaf. Plant protectives and fertilisers applied together with PhytoGreen-Adhesive are taken up more effectively.

The advantages:

- Excellent wetting /adhesive capability
 - Outstanding compatibility for plants
 - Prevents spray stains
- Supports fighting pests
- Very good miscibility
- Non-toxic for aquatic ecosystems
- Non-irritating
 - No environmental specification

Directions:

Back carrier spray nozzle: 1-2 % of water amount.

Miscibility: PhytoGreen[®]-CropCover1000 can be mixed with usual plant protection products. However, since it is not possible to foresee any or all instances that may occur in practice it is in any case recommended to perform a trial first.

Pack sizes: 1 | • 10 | • 200 | • 1000 | PhytoGreen[®]-CropCover1000 has an outstanding compatibility for plants especially for sensitive cultures. Phytotoxicity of aggressive plant protectives, fertilisers and herbicides as well as stains following spraying are prevented.

Recommendations for use:

To improve the efficiency of any plant treatment liquid, to reduce spraying stains: Add 4-8 l/ha to the application broth.

Storage: In a closed container, protected from sun light, between 0°C and 20°C.

In compliance with Council Regulation (EC) No 2018/848 on organic production.

PhytoGreen®-pH Regulators

pH-Regulator, Adhesive and Wetting agent (BVL-No. 8092-00)/ MANGANESE FERTILISER LIQUID

Composition:

PhytoGreen[®]-pH Total: CARBO-ECO pH: 20% Carboxylic acids 20% Carboxylic acids, 3% Manganese

Mode of action and advantages:

pH-Regulators ensure efficacy of plant protection products and leaf fertilisers

• Mixtures of natural carboxylic acids complex disruptive ions (like Ca-, Fe- or others) and deactivate them reliably (permanent effect compared to e.g. pure citric acid with short-term effects only)

- No health hazards (in contrast to boric acids: may damage fertility/ the unborn child)
- pH-Total: with excellent wetting characteristics additionally

Recommendations for use and application rates:

Very hard and/or ion-rich water:	As a general rule it's enough to add 50 ml PhytoGreen®-pH Total/ Carbo-Eco pH to 100 I of application broth to lower a pH of 7 to 5. Dependant to the ion content and pH of the water used, the application rate can be increased up to 100 ml/100 I application broth. In case of very hard or ion-rich water, we recommend a water analysis in advance. Add PhytoGreen®-pH Total/ Carbo-Eco pH as first component to the full water amount needed for the appliation, stir well and check pH. Please take into account optimal pH range for the plant protection product which is going to be used!
Alkaline plant protection- products or leaf fertilisers:	Application as above, add plant protection/ leaf fertilizer and check pH again. Eventu- ally correct with additional pH-Regulator / Carbo-Eco pH.

Effects of spray water quality on pesticides and foliar fertilisers:

The composition of the spray water influences the effectiveness of pesticides and foliar fertilisers. The measurement and setting of the correct pH value is particularly important In areas with a water hard-ness from 12 ° dH or 2.14 mmol total hardness / I. The magnesium, calcium, but also iron, manganese and other ions present in the water can react with the pesticides or foliar fertilizers and greatly reduce their efficacy.

When using PhytoGreen[®]-pH regulators, the carboxylic acids complex interfering ions and "switch them off". Ideally, the pH of a spray liquid should be between 5 and 5.5. This is ensured with a small addition of PhytoGreen[®]-pH regulators.

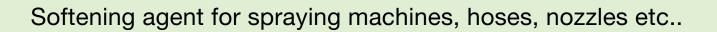
PhytoGreen®-pH Total also increases the uniform wetting and adhesion of an applied spray.

Technical details:

 PhytoGreen®-pH Total:
 Density: 1,16 kg/l; pH = 1,4

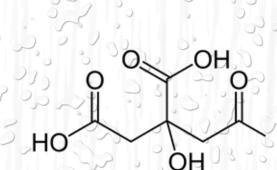
 CARBO-ECO pH:
 Density: 1,16 kg/l; pH = 1,7

Carbo-Eco pH is in compliance with Council Regulation (EC) No 2018/848 on organic farming. Listed at FiBL Inputs list for the organic agriculture in Germany.


Miscibility:

PhytoGreen[®]-pH regulators should not be mixed with copper oxychloride or with sulfonyl carbamide.

Pack sizes: 10 | • 20 | • 200 | • 1000 |



The active ingredient of the product:

30% citric acid

Citric acid is a colourless, water soluble carboxylic acid most common in plant tissue. Citric acids remove limescale and chelates unwanted ions like Calcium in hard water.

Structural formula of citric acid (C₆H₈O₇)

Recommendations for use:

Citrisol as softening agent:

Citrisol dissolves chalky deposits caused by water evaporation. Citrisol can be used to remove limescale in machines, hoses, nozzles and anywhere else.

To descale directly use undiluted Citrisol. You can dilute Citrisol with water at a ration of 1:2 if an exposure time of at least one hour is possible.

Wear protective gloves!

Directions:

Pack sizes: 5 ltr. · 10 ltr. · 200 ltr. · 1000 ltr.

PhytoGreen®-PowerClean

CLEANSER

Cleaning agent for spraying machines and other machinery.

The active ingredients of the product:

Anionic and ionic tensides, amines, corrosion inhibitors and flavor

In order to prevent sedimentary deposition and clogging of filter and nozzles, spraying machines should be cleaned after each use. PhytoGreen[®]-PowerClean steadily removes persistant residues of pesticides, fertilisers and other products.

The advantages:

- liquid
- suitable for all kind of machinery
- very intensive cleaning and degreasing
- provides a temporary anti-corrosion coating

Application rate:

The application rate depends on water hardness. The higher the mineral content of water, the more PhytoGreen[®]-PowerClean has to be used:

Jetting liquid	100 I	250 1	500 I	1000 I
Water hardness 1-2 (soft to middle, < 14°dH)	0,51	1,25 I	2,5 I	51
Water hardness 3 (hard, 14 - 21,3°dH)	0,75 I	1,875 I	3,75	7,5 I
Water hardness 4 (very hard, > 21,3 °dH)	11	2,5	51	10

PhytoGreen[®]-PowerClean gently removes oily and fatty substances without acting corrosive.

Application:

1. Fill tank at least with 20% of the needed water amount. Add 0,5-1 I PhytoGreen®-PowerClean/ 100 I water.

2. Pump jetting liquid into lines until all nozzles are getting rinsed. Rinse for 15 minutes while stirring. Only if residues are very persistent, leave jetting liquid for 24 hours.

3. Spray out complete jetting liquid via the nozzles.

4. Remove nozzles and filters afterwards. Clean seperately in a solution with 75 ml PhytoGreen[®]-PowerClean/ 10 I water.

Leaf- and Fruitanalysis

Please separate or copy next page

SAMPLING PROTOCOL AND LEAF-/ FRUIT ANALYSIS ORDER FORM

Send sample to:

Institut für Agrar- und Umweltanalytik	Tel.: +49 (0)34464/26582
Querfurter Straße 9	e-mail: info@iau-freyburg.de
D-06632 Freyburg/Unstrut	www.iau-freyburg.de

Customer information:

Customer name:				
Street:				
Postal Code/City/ Country:				
Tel./ Fax:				
E-mail:				
VAT-No.:				
Date of sampling:				
Free of charge advisory service by Phytosolution staff is wanted (yes/ no):				

Sample information:

Lab- No.¹	Sample- No.	Plot name	Culture	development stage (EC) (mandatory field!)	desired analysis*			Comments (e.g.: good / bad)			
					ME/TE ²	S³	Se ³	Co ³	C/N ³	Cl³	,,
					х						
					х						
					х						
					х						
					х						

¹ To be filled by the lab. * To be marked with a cross:

² ME: Main elements: N, Ca, K, P, Mg, Na; TE: Trace elements: Mn, Zn, Cu, B, Fe, Mo;

³S = Sulphur, Se = Selenium; Co = Cobalt, C/N = Carbon/Nitrogen; Cl = Chloride

The plant sample should be packed loosely, labeled clearly and easy to read, in solid paper bags (please do not use plastics). Send immediately to the testing laboratory with the accompanying analysis order form. The plant analysis allows a reliable diagnosis of the current nutritional status of the culture and is an important basis for any corrective fertilization. The analysis is limited to the study of green plants in the main growth phase. A conclusion on the soil conditions is often not possible because nutrient deficiency is often caused by ion antagonism, or adverse weather conditions.

EXAMPLE OF A LEAF ANALYSIS RESULT

Institut für Agrar- und Umweltanalytik

[Version 2.0 | 2015-04]

Akkreditiertes Agrarlabor für die Untersuchungen von Böden- Pflanzenteilen- Substraten

Dipl. Ing. W. Bannach Querfurter Str. 09, 06632 Freyburg/ Unstrut Tel.: 034464/26582 Fax.: 034464/28130 e-mail: info@iau-freyburg.de www.iau-freyburg.de

Auftraggeber:

Probenahmedatum:	28.06.2016		
Probenehmer:			
Probeneingang:	29.06.2016		
Bearbeitungszeitraum:	29.06.2016	bis	01.07.2016
Berichtsdatum:	01.07.2016		
Auftrags-/ Labor-Nr.:			W4420003680
Probenbezeichnung:	Corn		
Schlag			
ExtPrNr			

Analytical Report

					Eva	luation of 1	nutritional	status	
Element	Einheit	min*	max*	Measured	Α	В	С	D	E
Ν	% TS	3,50	5,00	2,85					
Ca	% TS	0,30	1,00	0,32		0			
Р	% TS	0,35	0,60	0,35		0			
K	% TS	3,00	4,50	2,86					
Mg	% TS	0,25	0,50	0,12		0			
Na	% TS	0,01	2,00	0,02]			
S	% TS	0,30	0,47	0,19	0				
В	ppm	7,0	15,0	4,0		0			
Mn	ppm	40,0	100	57,1					
Cu	ppm	7,00	15,0	9,0			0		
Zn	ppm	30,0	70,0	17,6					
Fe	ppm	50,0	150	110,8	-				
Mo	ppm	0,20	0,50	0,4					

40 bis 60 cm plant height, fully developed leaves

*min. value due to Bergmann, TLL , own threshold values

*max. value due to Bergmann, TLL , own threshold values

k.M. = smaller than threshold value

Analytical method: N total due to VDLUFA Methodenbuch II, 3.5.2.7

Micro- und Macro elements due to VDLUFA Methodenbuch VII. 2.2.2.6, 2. Teillfg.2003

A:	deficiency	
B:	slight deficiency	
C:	well nourished	
D:	slight oversupply	
E:	oversupply	

Sampling of leaves

Sampling should be distributed on the field at 20-30 different places. No samples taken, if treated with pesticides or nutrients in the previous 3-5 days. For plant analysis approximately 300-500 g fresh weight is required.

The following plant parts should be taken:

Plant	Stages of Development (EC)	Organ of Sampling			
Cereals	tillering until boots swollen (28-45) possible; best timing during tillering (28-29)	complete plants cutted 5 cm above the ground			
Oilseed rape	during development in the spring up to a plant height of 30-40 cm possble: bud small (53), bud medium (55), bud big (57), beginning of flowering (62), flowering (64)	youngest fully developed leaves without petiole			
Maize	40-60 cm plant height (EC 33-39) or during flowering (EC 61-69)	fully developed medium leaves or corncob leaves			
Lucerne (Alfalfa)	flower buds; beginning of flowering; full flowering	shoot of first emergence; from beginning of flowering upper shout part (15 cm)			
Sunflower	beginning of flowering (61)	upper fully developed leaves			
Potatoes	inflorescence emergence (51-59), beginning of flowering (60), end of flowering (69), tuber initiation (40)	youngest fully developed leaves			
Sugar beet	8-10-leaf stage (18-19) until the end of August	youngest fully developed medium leaves without petiole			
Grasses	beginning of flowering (60)	whole plant cuted 5 cm above ground			
Asparagus	45-90 cm plant height (34-35)	fully developed upper fern			
Wine	at 10% open flowers (61)	leaves opposite to the first flowerhood			
Strawberries	beginning of flowering until full flowering (60-65)	youngest, fully developed leaves from the centre of the plant			
Pomaceous / stone fruit	late July - early August	Leaves from the centre of this year's long shoots			
Fir trees	spring until late summer	one to two years old needles of upper shoot			

In other cultures, also upon the occurrence of deficiency- or excess-symptoms on individual leaves or plant parts, always total plants should be collected. Here, the minimum of sampling rate is 1-2 kg.

Imprint

PHYTOsolution is the agricultural product line of IAU-Service Werner Bannach

Querfurter Str. 9 D-06632 Freyburg

Tel: 0049 34464/61044 Fax: 0049 34464/61043

E-Mail: info@phytosolution.de

VAT-No. DE 168012015

General Manager: Werner Bannach